1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
// Copyright (c) 2021-2022 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of synfx-dsp. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
//! Various "voltage" controlled (usually band limited) oscillator implementations.
use crate::fast_sin;
// PolyBLEP by Tale
// (slightly modified)
// http://www.kvraudio.com/forum/viewtopic.php?t=375517
// from http://www.martin-finke.de/blog/articles/audio-plugins-018-polyblep-oscillator/
//
// default for `pw' should be 1.0, it's the pulse width
// for the square wave.
#[allow(dead_code)]
fn poly_blep_64(t: f64, dt: f64) -> f64 {
if t < dt {
let t = t / dt;
2. * t - (t * t) - 1.
} else if t > (1.0 - dt) {
let t = (t - 1.0) / dt;
(t * t) + 2. * t + 1.
} else {
0.
}
}
fn poly_blep(t: f32, dt: f32) -> f32 {
if t < dt {
let t = t / dt;
2. * t - (t * t) - 1.
} else if t > (1.0 - dt) {
let t = (t - 1.0) / dt;
(t * t) + 2. * t + 1.
} else {
0.
}
}
/// This is a band-limited oscillator based on the PolyBlep technique.
///
/// **NOTE:** You need to call [crate::init_cos_tab].
///
/// Here is a quick example on how to use it:
///
///```
/// use synfx_dsp::{PolyBlepOscillator, rand_01, init_cos_tab};
/// init_cos_tab();
///
/// // Randomize the initial phase to make cancellation on summing less
/// // likely:
/// let mut osc =
/// PolyBlepOscillator::new(rand_01() * 0.25);
///
///
/// let freq = 440.0; // Hz
/// let israte = 1.0 / 44100.0; // Seconds per Sample
/// let pw = 0.2; // Pulse-Width for the next_pulse()
/// let waveform = 0; // 0 being pulse in this example, 1 being sawtooth
///
/// let mut block_of_samples = [0.0; 128];
/// // in your process function:
/// for output_sample in block_of_samples.iter_mut() {
/// *output_sample =
/// if waveform == 1 {
/// osc.next_saw(freq, israte)
/// } else {
/// osc.next_pulse(freq, israte, pw)
/// }
/// }
///```
#[derive(Debug, Clone)]
pub struct PolyBlepOscillator {
phase: f32,
init_phase: f32,
last_output: f32,
}
impl PolyBlepOscillator {
/// Create a new instance of [PolyBlepOscillator].
///
/// * `init_phase` - Initial phase of the oscillator.
/// Range of this parameter is from 0.0 to 1.0. Passing a random
/// value is advised for preventing phase cancellation when summing multiple
/// oscillators.
///
///```
/// use synfx_dsp::*;
///
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
///```
pub fn new(init_phase: f32) -> Self {
Self { phase: 0.0, last_output: 0.0, init_phase }
}
/// Reset the internal state of the oscillator as if you just called
/// [PolyBlepOscillator::new].
#[inline]
pub fn reset(&mut self) {
self.phase = self.init_phase;
self.last_output = 0.0;
}
/// Creates the next sample of a sine wave.
///
/// * `freq` - The frequency in Hz.
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
///```
/// use synfx_dsp::*;
///
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
///
/// let freq = 440.0; // Hz
/// let israte = 1.0 / 44100.0; // Seconds per Sample
///
/// // ...
/// let sample = osc.next_sin(freq, israte);
/// // ...
///```
#[inline]
pub fn next_sin(&mut self, freq: f32, israte: f32) -> f32 {
let phase_inc = freq * israte;
let s = fast_sin(self.phase * 2.0 * std::f32::consts::PI);
self.phase += phase_inc;
self.phase = self.phase.fract();
s as f32
}
/// Creates the next sample of a triangle wave. Please note that the
/// bandlimited waveform needs a few initial samples to swing in.
///
/// * `freq` - The frequency in Hz.
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
///```
/// use synfx_dsp::*;
///
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
///
/// let freq = 440.0; // Hz
/// let israte = 1.0 / 44100.0; // Seconds per Sample
///
/// // ...
/// let sample = osc.next_tri(freq, israte);
/// // ...
///```
#[inline]
pub fn next_tri(&mut self, freq: f32, israte: f32) -> f32 {
let phase_inc = freq * israte;
let mut s = if self.phase < 0.5 { 1.0 } else { -1.0 };
s += poly_blep(self.phase, phase_inc);
s -= poly_blep((self.phase + 0.5).fract(), phase_inc);
// leaky integrator: y[n] = A * x[n] + (1 - A) * y[n-1]
s = phase_inc * s + (1.0 - phase_inc) * self.last_output;
self.last_output = s;
self.phase += phase_inc;
self.phase = self.phase.fract();
// the signal is a bit too weak, we need to amplify it
// or else the volume diff between the different waveforms
// is too big:
s * 4.0
}
/// Creates the next sample of a sawtooth wave.
///
/// * `freq` - The frequency in Hz.
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
///```
/// use synfx_dsp::*;
///
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
///
/// let freq = 440.0; // Hz
/// let israte = 1.0 / 44100.0; // Seconds per Sample
///
/// // ...
/// let sample = osc.next_saw(freq, israte);
/// // ...
///```
#[inline]
pub fn next_saw(&mut self, freq: f32, israte: f32) -> f32 {
let phase_inc = freq * israte;
let mut s = (2.0 * self.phase) - 1.0;
s -= poly_blep(self.phase, phase_inc);
self.phase += phase_inc;
self.phase = self.phase.fract();
s
}
/// Creates the next sample of a pulse wave.
/// In comparison to [PolyBlepOscillator::next_pulse_no_dc] this
/// version is DC compensated, so that you may add multiple different
/// pulse oscillators for a unison effect without too big DC issues.
///
/// * `freq` - The frequency in Hz.
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
/// * `pw` - The pulse width. Use the value 0.0 for a square wave.
///```
/// use synfx_dsp::*;
///
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
///
/// let freq = 440.0; // Hz
/// let israte = 1.0 / 44100.0; // Seconds per Sample
/// let pw = 0.0; // 0.0 is a square wave.
///
/// // ...
/// let sample = osc.next_pulse(freq, israte, pw);
/// // ...
///```
#[inline]
pub fn next_pulse(&mut self, freq: f32, israte: f32, pw: f32) -> f32 {
let phase_inc = freq * israte;
let pw = (0.1 * pw) + ((1.0 - pw) * 0.5); // some scaling
let dc_compensation = (0.5 - pw) * 2.0;
let mut s = if self.phase < pw { 1.0 } else { -1.0 };
s += poly_blep(self.phase, phase_inc);
s -= poly_blep((self.phase + (1.0 - pw)).fract(), phase_inc);
s += dc_compensation;
self.phase += phase_inc;
self.phase = self.phase.fract();
s
}
/// Creates the next sample of a pulse wave.
/// In comparison to [PolyBlepOscillator::next_pulse] this
/// version is not DC compensated. So be careful when adding multiple
/// of this or generally using it in an audio context.
///
/// * `freq` - The frequency in Hz.
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
/// * `pw` - The pulse width. Use the value 0.0 for a square wave.
///```
/// use synfx_dsp::*;
///
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
///
/// let freq = 440.0; // Hz
/// let israte = 1.0 / 44100.0; // Seconds per Sample
/// let pw = 0.0; // 0.0 is a square wave.
///
/// // ...
/// let sample = osc.next_pulse_no_dc(freq, israte, pw);
/// // ...
///```
#[inline]
pub fn next_pulse_no_dc(&mut self, freq: f32, israte: f32, pw: f32) -> f32 {
let phase_inc = freq * israte;
let pw = (0.1 * pw) + ((1.0 - pw) * 0.5); // some scaling
let mut s = if self.phase < pw { 1.0 } else { -1.0 };
s += poly_blep(self.phase, phase_inc);
s -= poly_blep((self.phase + (1.0 - pw)).fract(), phase_inc);
self.phase += phase_inc;
self.phase = self.phase.fract();
s
}
}
// This oscillator is based on the work "VECTOR PHASESHAPING SYNTHESIS"
// by: Jari Kleimola*, Victor Lazzarini†, Joseph Timoney†, Vesa Välimäki*
// *Aalto University School of Electrical Engineering Espoo, Finland;
// †National University of Ireland, Maynooth Ireland
//
// See also this PDF: http://recherche.ircam.fr/pub/dafx11/Papers/55_e.pdf
/// Vector Phase Shaping Oscillator.
/// The parameters `d` and `v` control the shape of the sinus
/// wave. This leads to interesting modulation properties of those
/// control values.
///
///```
/// use synfx_dsp::*;
///
/// // Randomize the initial phase to make cancellation on summing less
/// // likely:
/// let mut osc =
/// VPSOscillator::new(rand_01() * 0.25);
///
///
/// let freq = 440.0; // Hz
/// let israte = 1.0 / 44100.0; // Seconds per Sample
/// let d = 0.5; // Range: 0.0 to 1.0
/// let v = 0.75; // Range: 0.0 to 1.0
///
/// let mut block_of_samples = [0.0; 128];
/// // in your process function:
/// for output_sample in block_of_samples.iter_mut() {
/// // It is advised to limit the `v` value, because with certain
/// // `d` values the combination creates just a DC offset.
/// let v = VPSOscillator::limit_v(d, v);
/// *output_sample = osc.next(freq, israte, d, v);
/// }
///```
///
/// It can be beneficial to apply distortion and oversampling.
/// Especially oversampling can be important for some `d` and `v`
/// combinations, even without distortion.
///
///```
/// use synfx_dsp::{VPSOscillator, rand_01, apply_distortion};
/// use synfx_dsp::Oversampling;
///
/// let mut osc = VPSOscillator::new(rand_01() * 0.25);
/// let mut ovr : Oversampling<4> = Oversampling::new();
///
/// let freq = 440.0; // Hz
/// let israte = 1.0 / 44100.0; // Seconds per Sample
/// let d = 0.5; // Range: 0.0 to 1.0
/// let v = 0.75; // Range: 0.0 to 1.0
///
/// let mut block_of_samples = [0.0; 128];
/// // in your process function:
/// for output_sample in block_of_samples.iter_mut() {
/// // It is advised to limit the `v` value, because with certain
/// // `d` values the combination creates just a DC offset.
/// let v = VPSOscillator::limit_v(d, v);
///
/// let overbuf = ovr.resample_buffer();
/// for b in overbuf {
/// *b = apply_distortion(osc.next(freq, israte, d, v), 0.9, 1);
/// }
/// *output_sample = ovr.downsample();
/// }
///```
#[derive(Debug, Clone)]
pub struct VPSOscillator {
phase: f32,
init_phase: f32,
}
impl VPSOscillator {
/// Create a new instance of [VPSOscillator].
///
/// * `init_phase` - The initial phase of the oscillator.
pub fn new(init_phase: f32) -> Self {
Self { phase: 0.0, init_phase }
}
/// Reset the phase of the oscillator to the initial phase.
#[inline]
pub fn reset(&mut self) {
self.phase = self.init_phase;
}
#[inline]
fn s(p: f32) -> f32 {
-(std::f32::consts::TAU * p).cos()
}
#[inline]
fn phi_vps(x: f32, v: f32, d: f32) -> f32 {
if x < d {
(v * x) / d
} else {
v + ((1.0 - v) * (x - d)) / (1.0 - d)
}
}
/// This rather complicated function blends out some
/// combinations of 'd' and 'v' that just lead to a constant DC
/// offset. Which is not very useful in an audio oscillator
/// context.
///
/// Call this before passing `v` to [VPSOscillator::next].
#[inline]
pub fn limit_v(d: f32, v: f32) -> f32 {
let delta = 0.5 - (d - 0.5).abs();
if delta < 0.05 {
let x = (0.05 - delta) * 19.99;
if d < 0.5 {
let mm = x * 0.5;
let max = 1.0 - mm;
if v > max && v < 1.0 {
max
} else if v >= 1.0 && v < (1.0 + mm) {
1.0 + mm
} else {
v
}
} else {
if v < 1.0 {
v.clamp(x * 0.5, 1.0)
} else {
v
}
}
} else {
v
}
}
/// Creates the next sample of this oscillator.
///
/// * `freq` - The frequency in Hz.
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
/// * `d` - The phase distortion parameter `d` which must be in the range `0.0` to `1.0`.
/// * `v` - The phase distortion parameter `v` which must be in the range `0.0` to `1.0`.
///
/// It is advised to limit the `v` using the [VPSOscillator::limit_v] function
/// before calling this function. To prevent DC offsets when modulating the parameters.
pub fn next(&mut self, freq: f32, israte: f32, d: f32, v: f32) -> f32 {
let s = Self::s(Self::phi_vps(self.phase, v, d));
self.phase += freq * israte;
self.phase = self.phase.fract();
s
}
}
//pub struct UnisonBlep {
// oscs: Vec<PolyBlepOscillator>,
//// dc_block: crate::filter::DCBlockFilter,
//}
//
//impl UnisonBlep {
// pub fn new(max_unison: usize) -> Self {
// let mut oscs = vec![];
// let mut rng = RandGen::new();
//
// let dis_init_phase = 0.05;
// for i in 0..(max_unison + 1) {
// // randomize phases so we fatten the unison, get
// // less DC and not an amplified signal until the
// // detune desyncs the waves.
// // But no random phase for first, so we reduce the click
// let init_phase =
// if i == 0 { 0.0 } else { rng.next_open01() };
// oscs.push(PolyBlepOscillator::new(init_phase));
// }
//
// Self {
// oscs,
//// dc_block: crate::filter::DCBlockFilter::new(),
// }
// }
//
// pub fn set_sample_rate(&mut self, srate: f32) {
//// self.dc_block.set_sample_rate(srate);
// for o in self.oscs.iter_mut() {
// o.set_sample_rate(srate);
// }
// }
//
// pub fn reset(&mut self) {
//// self.dc_block.reset();
// for o in self.oscs.iter_mut() {
// o.reset();
// }
// }
//
// pub fn next<P: OscillatorInputParams>(&mut self, params: &P) -> f32 {
// let unison =
// (params.unison().floor() as usize)
// .min(self.oscs.len() - 1);
// let detune = params.detune() as f64;
//
// let mix = (1.0 / ((unison + 1) as f32)).sqrt();
//
// let mut s = mix * self.oscs[0].next(params, 0.0);
//
// for u in 0..unison {
// let detune_factor =
// detune * (((u / 2) + 1) as f64
// * if (u % 2) == 0 { 1.0 } else { -1.0 });
// s += mix * self.oscs[u + 1].next(params, detune_factor * 0.01);
// }
//
//// self.dc_block.next(s)
// s
// }
//}