1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// Copyright (c) 2022 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of synfx-dsp. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
//
// This file contains the VA filter code of Fredemus' aka Frederik Halkjær aka RocketPhysician
// VA filter implementation.
// Copied under GPL-3.0-or-later from https://github.com/Fredemus/va-filter

use crate::fh_va::{DKSolver, FilterParams, SvfMode};
use std::sync::Arc;
use std::simd::f32x4;

/// This is a 2-pole multimode filter.
///
/// This is a 2-pole multimode filter loosely based on the one found in the edp
/// wasp synthesizer. It's a good all-around filter that distorts nicely and
/// keeps resonance well at high levels.
///
/// It's capable of outputting all basic filter modes (lowpass, highpass,
/// bandpass, notch, etc.) and self-oscillation.
///
/// OTA core, nonlinear op-amp buffers. The EDP wasp uses inverters as a weird
/// extremely nonlinear op-amp buffer, but I haven't looked into how to model
/// that (in a way that converges well) yet.  Resonance is limited by a diode
/// clipper on the damping feedback, boosting it when gain is high, since it'd
/// otherwise disappear because of the opamp nonlinearities, which would lead
/// to the resonance completely dominating the signal.
///
/// Its convergence is generally good.  The convergence gets a lot better when
/// oversampled 2x or more, which I recommend anyway since it distorts.
///
/// Circuit solved by Holters & Zölzer's generalization of the DK-method. This
/// method has a lot of advantages compared to the other approach, namely it's
/// much better equipped for handling nonlinear voltage-controlled voltage
/// sources such as op-amps and jacobian matrices are only necessary on a
/// per-component basis, meaning it's not necessary to solve the whole system
/// each iteration, speeding up iterations significantly.  Special thanks to
/// Martin Holters and his amazing circuit emulation tool
/// [ACME](https://github.com/HSU-ANT/ACME.jl) for the great work on circuit
/// emulation and answering my questions when I got stuck.
///
/// The fast version is optimized by removing unnecessary operations and
/// replacing the general solver with an analytic solution of the specific
/// model.  At some point I'll look into how a simd-optimized version would
/// compare, since most of the operations are dot products anyway, but the
/// current fast version is definitely fast enough for real-time use in DAW
/// projects.  Sadly convergence varies too much for using simd-lanes for
/// processing left and right at the same time to bring a big performance
/// benefit.
#[derive(Debug, Clone)]
pub struct Svf {
    filters: [SvfCoreFast; 2],
}

const N_P: usize = 3;
const N_N: usize = 4;
const P_LEN: usize = 8;
const N_OUTS: usize = 3;
const N_STATES: usize = 2;
const TOL: f64 = 1e-5;

impl Svf {
    pub fn new(params: Arc<FilterParams>) -> Self {
        Self { filters: [SvfCoreFast::new(params.clone()), SvfCoreFast::new(params)] }
    }
    /// Process a stereo sample.
    pub fn process(&mut self, input: f32x4) -> f32x4 {
        f32x4::from_array([
            self.filters[0].tick_dk(input[0]),
            self.filters[1].tick_dk(input[1]),
            0.,
            0.,
        ])
    }
    /// Call this whenver the resonance or cutoff frequency of the [FilterParams] change.
    pub fn update(&mut self) {
        self.filters[0].update_matrices();
        self.filters[1].update_matrices();
    }
    /// Reset the filter.
    pub fn reset(&mut self) {
        self.filters[0].reset();
        self.filters[1].reset();
    }
}

#[derive(Debug, Clone)]
pub struct SvfCoreFast {
    pub params: Arc<FilterParams>,
    pub vout: [f32; N_OUTS],
    pub s: [f32; N_STATES],

    // the not-trivial coefficients in the model
    c1: f64,
    c2: f64,
    // for storing the jacobian for the q (p + dot(z, fq) vector
    jq: [f64; P_LEN],
    solver: DKSolver<N_N, N_P, P_LEN>,
}

impl SvfCoreFast {
    pub fn new(params: Arc<FilterParams>) -> Self {
        let fs = params.sample_rate;
        let g = (std::f32::consts::PI * 1000. / (fs as f32)).tan();
        let res = 0.1;
        let g_f64 = g as f64;
        let res_f64 = res as f64;

        let mut a = Self {
            params,
            vout: [0.; N_OUTS],
            s: [0.; 2],

            c1: 2. * g_f64,
            c2: res_f64,

            jq: [0., -1., 0., -1., 0., -1., 0., -1.],
            solver: DKSolver::new(),
        };
        a.reset();
        a
    }

    pub fn update_matrices(&mut self) {
        let g = self.params.g * 2.;
        let res = self.params.zeta;
        let g_f64 = g as f64;
        let res_f64 = res as f64;

        self.c1 = 2. * g_f64;
        self.c2 = res_f64;
    }
    pub fn tick_dk(&mut self, input: f32) -> f32 {
        // -input since the svf inverts it
        let input = -input * (self.params.drive);

        let mut p = [0.; N_P];

        p[0] = -self.s[0] as f64;
        p[1] = -self.s[1] as f64;
        p[2] = input as f64;

        // find nonlinear contributions (solver.z), applying homotopy if it fails to converge
        self.homotopy_solver(p);
        // self.nonlinear_contribs(p);

        self.vout[0] = self.solver.z[3] as f32;
        self.vout[1] = self.solver.z[2] as f32;
        self.vout[2] = self.solver.z[1] as f32;

        self.s[0] = self.s[0] - 2. * (self.c1 * self.solver.z[1]) as f32;
        self.s[1] = self.s[1] - 2. * (self.c1 * self.solver.z[2]) as f32;

        self.get_output(input, self.params.zeta)
    }

    pub fn homotopy_solver(&mut self, p: [f64; N_P]) {
        self.nonlinear_contribs(p);
        // if the newton solver failed to converge, apply homotopy
        if self.solver.resmaxabs >= TOL {
            // println!("needs homotopy");
            let mut a = 0.5;
            let mut best_a = 0.;
            while best_a < 1. {
                let mut pa = self.solver.last_p;

                for i in 0..pa.len() {
                    pa[i] = pa[i] * (1. - a);
                    pa[i] = pa[i] + a * p[i];
                }
                self.nonlinear_contribs(pa);
                if self.solver.resmaxabs < TOL {
                    best_a = a;
                    a = 1.0;
                } else {
                    let new_a = (a + best_a) / 2.;
                    if !(best_a < new_a && new_a < a) {
                        // no values between a and best_a. This means the homotopy failed to find an in-between value for the solution
                        break;
                    }
                    a = new_a;
                }
            }
        }
    }

    // uses newton's method to find the nonlinear contributions in the circuit. Not guaranteed to converge
    fn nonlinear_contribs(&mut self, p: [f64; N_P]) {
        self.solver.p_full[2] = p[0];
        self.solver.p_full[4] = p[1];
        self.solver.p_full[7] = p[2];

        let mut tmp_np = [0.; N_P];

        tmp_np[0] = p[0] - self.solver.last_p[0];
        tmp_np[1] = p[1] - self.solver.last_p[1];
        tmp_np[2] = p[2] - self.solver.last_p[2];

        let mut tmp_nn = [
            0.,
            self.jq[2] * tmp_np[0],
            self.jq[4] * tmp_np[1],
            -tmp_np[2],
        ];
        tmp_nn = self.solve_lin_equations(tmp_nn);
        for i in 0..N_N {
            self.solver.z[i] = self.solver.last_z[i] - tmp_nn[i];
        }

        for _plsconverge in 0..100 {
            self.evaluate_nonlinearities(self.solver.z);

            self.solver.resmaxabs = 0.;
            for x in &self.solver.residue {
                if x.is_finite() {
                    if x.abs() > self.solver.resmaxabs {
                        self.solver.resmaxabs = x.abs();
                    }
                } else {
                    // if any of the residue have become NaN/inf, stop early.
                    // If using the homotopy solver, it will kick in and find an alternate, slower path to convergence
                    self.solver.resmaxabs = 1000.;
                    return;
                }
            }

            // self.solver.set_lin_solver(self.solver.j);
            if self.solver.resmaxabs < TOL {
                // dbg!(_plsconverge);
                break;
            }

            // update z with the linsolver according to the residue
            tmp_nn = self.solve_lin_equations(self.solver.residue);
            // tmp_nn = self.solver.solve_linear_equations(self.solver.residue);

            for i in 0..self.solver.z.len() {
                self.solver.z[i] -= tmp_nn[i];
            }
        }
        if self.solver.resmaxabs < TOL {
            self.solver.set_extrapolation_origin(p, self.solver.z);
        }
        // else {
        // panic!("failed to converge. residue: {:?}", self.solver.residue);
        // println!("failed to converge. residue: {:?}", self.solver.residue);
        // }
    }
    #[inline]
    fn evaluate_nonlinearities(&mut self, z: [f64; N_N]) {
        let mut q = self.solver.p_full;

        q[0] += z[0];
        q[1] += z[1];
        q[2] += self.c1 * z[1] - z[2];
        q[3] += z[2];
        q[4] += self.c1 * z[2] - z[3];
        q[5] += z[3];
        q[6] += -z[0] - z[2];
        q[7] += 4. * z[0] + z[1] + self.c2 * z[2] + 2. * z[3];
        // q[7] += 3. * z[0] + z[1] + self.c2 * z[2] + z[3];

        let (res1, jq1) = self.solver.eval_opamp(q[0], q[1]);
        let (res2, jq2) = self.solver.eval_opamp(q[2], q[3]);
        let (res3, jq3) = self.solver.eval_opamp(q[4], q[5]);

        let (res4, jq4) = self.solver.eval_diodepair(q[6], q[7], 1e-12, 1.28);

        self.jq[0] = jq1[0];
        self.jq[2] = jq2[0];
        self.jq[4] = jq3[0];
        self.jq[6] = jq4[0];

        self.solver.residue = [res1, res2, res3, res4];
    }

    #[inline(always)]
    fn solve_lin_equations(&mut self, b: [f64; N_N]) -> [f64; N_N] {
        let j00 = self.jq[0];
        let j11 = self.jq[2] * self.c1;
        let j12 = -self.jq[2] - 1.;
        let j22 = self.jq[4] * self.c1;
        let j23 = -self.jq[4] - 1.;
        // let j30 = -self.jq[6] + -3.;
        // let j32 = -self.jq[6] + -1. * self.c2;
        let j30 = -self.jq[6] - 4.;
        let j32 = -self.jq[6] - self.c2;
        let mut x = [0.; N_N];

        // x[0] = (((-b[0] + b[3]) * j12 - j32 * (b[0] * j11 + b[1])) * j23 + b[2] * j12
        //     - j22 * (b[0] * j11 + b[1]))
        //     / (((-j00 + j30) * j12 - j32 * j00 * j11) * j23 - j00 * j11 * j22);
        // x[1] = j00 * x[0] - b[0];
        // x[2] = (-j11 * x[1] + b[1]) / j12;
        // x[3] = j30 * x[0] + j32 * x[2] - b[3] - x[1];

        x[0] = (((-b[0] + b[3]) * j12 - j32 * (b[0] * j11 + b[1])) * j23 + 2. * b[2] * j12
            - 2. * j22 * (b[0] * j11 + b[1]))
            / (((j30 - j00) * j12 - j32 * j00 * j11) * j23 - 2. * j00 * j11 * j22);
        x[1] = j00 * x[0] - b[0];
        x[2] = (-j11 * x[1] + b[1]) / j12;
        x[3] = 0.5 * (j30 * x[0] + j32 * x[2] - b[3] - x[1]);
        x
    }
    pub fn reset(&mut self) {
        self.s = [0.; 2];
        self.solver.p_full = [0.; P_LEN];
        self.evaluate_nonlinearities([0.; N_N]);
        self.solver.set_extrapolation_origin([0.; N_P], [0.; N_N]);
    }
    // highpass and notch doesn't work right, likely because `input` isn't quite defined right. Prolly doesn't need to be subtracted?
    // ^ seems to be fixed now?
    fn get_output(&self, input: f32, k: f32) -> f32 {
        match self.params.mode {
            SvfMode::LP => self.vout[0],  // lowpass
            SvfMode::HP => self.vout[2],  // highpass
            SvfMode::BP1 => self.vout[1], // bandpass
            // the notch isn't limited to the -1 to 1 range like the other modes, not sure how to solve nicely for it currently
            SvfMode::Notch => input + k * self.vout[1], // notch
            //3 => input + 2. * k * self.vout[1], // allpass
            SvfMode::BP2 => k * self.vout[1], // bandpass (normalized peak gain)
                                              // _ => input + 2. * self.vout[1] + k * self.vout[0], // peak / resonator thingy
        }
    }
}