1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
// Copyright (c) 2022 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of synfx-dsp. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
//
// This file contains the VA filter code of Fredemus' aka Frederik Halkjær aka RocketPhysician
// VA filter implementation.
// Copied under GPL-3.0-or-later from https://github.com/Fredemus/va-filter
use crate::fh_va::{DKSolver, FilterParams, SvfMode};
use std::sync::Arc;
use std::simd::f32x4;
/// This is a 2-pole multimode filter.
///
/// This is a 2-pole multimode filter loosely based on the one found in the edp
/// wasp synthesizer. It's a good all-around filter that distorts nicely and
/// keeps resonance well at high levels.
///
/// It's capable of outputting all basic filter modes (lowpass, highpass,
/// bandpass, notch, etc.) and self-oscillation.
///
/// OTA core, nonlinear op-amp buffers. The EDP wasp uses inverters as a weird
/// extremely nonlinear op-amp buffer, but I haven't looked into how to model
/// that (in a way that converges well) yet. Resonance is limited by a diode
/// clipper on the damping feedback, boosting it when gain is high, since it'd
/// otherwise disappear because of the opamp nonlinearities, which would lead
/// to the resonance completely dominating the signal.
///
/// Its convergence is generally good. The convergence gets a lot better when
/// oversampled 2x or more, which I recommend anyway since it distorts.
///
/// Circuit solved by Holters & Zölzer's generalization of the DK-method. This
/// method has a lot of advantages compared to the other approach, namely it's
/// much better equipped for handling nonlinear voltage-controlled voltage
/// sources such as op-amps and jacobian matrices are only necessary on a
/// per-component basis, meaning it's not necessary to solve the whole system
/// each iteration, speeding up iterations significantly. Special thanks to
/// Martin Holters and his amazing circuit emulation tool
/// [ACME](https://github.com/HSU-ANT/ACME.jl) for the great work on circuit
/// emulation and answering my questions when I got stuck.
///
/// The fast version is optimized by removing unnecessary operations and
/// replacing the general solver with an analytic solution of the specific
/// model. At some point I'll look into how a simd-optimized version would
/// compare, since most of the operations are dot products anyway, but the
/// current fast version is definitely fast enough for real-time use in DAW
/// projects. Sadly convergence varies too much for using simd-lanes for
/// processing left and right at the same time to bring a big performance
/// benefit.
#[derive(Debug, Clone)]
pub struct Svf {
filters: [SvfCoreFast; 2],
}
const N_P: usize = 3;
const N_N: usize = 4;
const P_LEN: usize = 8;
const N_OUTS: usize = 3;
const N_STATES: usize = 2;
const TOL: f64 = 1e-5;
impl Svf {
pub fn new(params: Arc<FilterParams>) -> Self {
Self { filters: [SvfCoreFast::new(params.clone()), SvfCoreFast::new(params)] }
}
/// Process a stereo sample.
pub fn process(&mut self, input: f32x4) -> f32x4 {
f32x4::from_array([
self.filters[0].tick_dk(input[0]),
self.filters[1].tick_dk(input[1]),
0.,
0.,
])
}
/// Call this whenver the resonance or cutoff frequency of the [FilterParams] change.
pub fn update(&mut self) {
self.filters[0].update_matrices();
self.filters[1].update_matrices();
}
/// Reset the filter.
pub fn reset(&mut self) {
self.filters[0].reset();
self.filters[1].reset();
}
}
#[derive(Debug, Clone)]
pub struct SvfCoreFast {
pub params: Arc<FilterParams>,
pub vout: [f32; N_OUTS],
pub s: [f32; N_STATES],
// the not-trivial coefficients in the model
c1: f64,
c2: f64,
// for storing the jacobian for the q (p + dot(z, fq) vector
jq: [f64; P_LEN],
solver: DKSolver<N_N, N_P, P_LEN>,
}
impl SvfCoreFast {
pub fn new(params: Arc<FilterParams>) -> Self {
let fs = params.sample_rate;
let g = (std::f32::consts::PI * 1000. / (fs as f32)).tan();
let res = 0.1;
let g_f64 = g as f64;
let res_f64 = res as f64;
let mut a = Self {
params,
vout: [0.; N_OUTS],
s: [0.; 2],
c1: 2. * g_f64,
c2: res_f64,
jq: [0., -1., 0., -1., 0., -1., 0., -1.],
solver: DKSolver::new(),
};
a.reset();
a
}
pub fn update_matrices(&mut self) {
let g = self.params.g * 2.;
let res = self.params.zeta;
let g_f64 = g as f64;
let res_f64 = res as f64;
self.c1 = 2. * g_f64;
self.c2 = res_f64;
}
pub fn tick_dk(&mut self, input: f32) -> f32 {
// -input since the svf inverts it
let input = -input * (self.params.drive);
let mut p = [0.; N_P];
p[0] = -self.s[0] as f64;
p[1] = -self.s[1] as f64;
p[2] = input as f64;
// find nonlinear contributions (solver.z), applying homotopy if it fails to converge
self.homotopy_solver(p);
// self.nonlinear_contribs(p);
self.vout[0] = self.solver.z[3] as f32;
self.vout[1] = self.solver.z[2] as f32;
self.vout[2] = self.solver.z[1] as f32;
self.s[0] = self.s[0] - 2. * (self.c1 * self.solver.z[1]) as f32;
self.s[1] = self.s[1] - 2. * (self.c1 * self.solver.z[2]) as f32;
self.get_output(input, self.params.zeta)
}
pub fn homotopy_solver(&mut self, p: [f64; N_P]) {
self.nonlinear_contribs(p);
// if the newton solver failed to converge, apply homotopy
if self.solver.resmaxabs >= TOL {
// println!("needs homotopy");
let mut a = 0.5;
let mut best_a = 0.;
while best_a < 1. {
let mut pa = self.solver.last_p;
for i in 0..pa.len() {
pa[i] = pa[i] * (1. - a);
pa[i] = pa[i] + a * p[i];
}
self.nonlinear_contribs(pa);
if self.solver.resmaxabs < TOL {
best_a = a;
a = 1.0;
} else {
let new_a = (a + best_a) / 2.;
if !(best_a < new_a && new_a < a) {
// no values between a and best_a. This means the homotopy failed to find an in-between value for the solution
break;
}
a = new_a;
}
}
}
}
// uses newton's method to find the nonlinear contributions in the circuit. Not guaranteed to converge
fn nonlinear_contribs(&mut self, p: [f64; N_P]) {
self.solver.p_full[2] = p[0];
self.solver.p_full[4] = p[1];
self.solver.p_full[7] = p[2];
let mut tmp_np = [0.; N_P];
tmp_np[0] = p[0] - self.solver.last_p[0];
tmp_np[1] = p[1] - self.solver.last_p[1];
tmp_np[2] = p[2] - self.solver.last_p[2];
let mut tmp_nn = [
0.,
self.jq[2] * tmp_np[0],
self.jq[4] * tmp_np[1],
-tmp_np[2],
];
tmp_nn = self.solve_lin_equations(tmp_nn);
for i in 0..N_N {
self.solver.z[i] = self.solver.last_z[i] - tmp_nn[i];
}
for _plsconverge in 0..100 {
self.evaluate_nonlinearities(self.solver.z);
self.solver.resmaxabs = 0.;
for x in &self.solver.residue {
if x.is_finite() {
if x.abs() > self.solver.resmaxabs {
self.solver.resmaxabs = x.abs();
}
} else {
// if any of the residue have become NaN/inf, stop early.
// If using the homotopy solver, it will kick in and find an alternate, slower path to convergence
self.solver.resmaxabs = 1000.;
return;
}
}
// self.solver.set_lin_solver(self.solver.j);
if self.solver.resmaxabs < TOL {
// dbg!(_plsconverge);
break;
}
// update z with the linsolver according to the residue
tmp_nn = self.solve_lin_equations(self.solver.residue);
// tmp_nn = self.solver.solve_linear_equations(self.solver.residue);
for i in 0..self.solver.z.len() {
self.solver.z[i] -= tmp_nn[i];
}
}
if self.solver.resmaxabs < TOL {
self.solver.set_extrapolation_origin(p, self.solver.z);
}
// else {
// panic!("failed to converge. residue: {:?}", self.solver.residue);
// println!("failed to converge. residue: {:?}", self.solver.residue);
// }
}
#[inline]
fn evaluate_nonlinearities(&mut self, z: [f64; N_N]) {
let mut q = self.solver.p_full;
q[0] += z[0];
q[1] += z[1];
q[2] += self.c1 * z[1] - z[2];
q[3] += z[2];
q[4] += self.c1 * z[2] - z[3];
q[5] += z[3];
q[6] += -z[0] - z[2];
q[7] += 4. * z[0] + z[1] + self.c2 * z[2] + 2. * z[3];
// q[7] += 3. * z[0] + z[1] + self.c2 * z[2] + z[3];
let (res1, jq1) = self.solver.eval_opamp(q[0], q[1]);
let (res2, jq2) = self.solver.eval_opamp(q[2], q[3]);
let (res3, jq3) = self.solver.eval_opamp(q[4], q[5]);
let (res4, jq4) = self.solver.eval_diodepair(q[6], q[7], 1e-12, 1.28);
self.jq[0] = jq1[0];
self.jq[2] = jq2[0];
self.jq[4] = jq3[0];
self.jq[6] = jq4[0];
self.solver.residue = [res1, res2, res3, res4];
}
#[inline(always)]
fn solve_lin_equations(&mut self, b: [f64; N_N]) -> [f64; N_N] {
let j00 = self.jq[0];
let j11 = self.jq[2] * self.c1;
let j12 = -self.jq[2] - 1.;
let j22 = self.jq[4] * self.c1;
let j23 = -self.jq[4] - 1.;
// let j30 = -self.jq[6] + -3.;
// let j32 = -self.jq[6] + -1. * self.c2;
let j30 = -self.jq[6] - 4.;
let j32 = -self.jq[6] - self.c2;
let mut x = [0.; N_N];
// x[0] = (((-b[0] + b[3]) * j12 - j32 * (b[0] * j11 + b[1])) * j23 + b[2] * j12
// - j22 * (b[0] * j11 + b[1]))
// / (((-j00 + j30) * j12 - j32 * j00 * j11) * j23 - j00 * j11 * j22);
// x[1] = j00 * x[0] - b[0];
// x[2] = (-j11 * x[1] + b[1]) / j12;
// x[3] = j30 * x[0] + j32 * x[2] - b[3] - x[1];
x[0] = (((-b[0] + b[3]) * j12 - j32 * (b[0] * j11 + b[1])) * j23 + 2. * b[2] * j12
- 2. * j22 * (b[0] * j11 + b[1]))
/ (((j30 - j00) * j12 - j32 * j00 * j11) * j23 - 2. * j00 * j11 * j22);
x[1] = j00 * x[0] - b[0];
x[2] = (-j11 * x[1] + b[1]) / j12;
x[3] = 0.5 * (j30 * x[0] + j32 * x[2] - b[3] - x[1]);
x
}
pub fn reset(&mut self) {
self.s = [0.; 2];
self.solver.p_full = [0.; P_LEN];
self.evaluate_nonlinearities([0.; N_N]);
self.solver.set_extrapolation_origin([0.; N_P], [0.; N_N]);
}
// highpass and notch doesn't work right, likely because `input` isn't quite defined right. Prolly doesn't need to be subtracted?
// ^ seems to be fixed now?
fn get_output(&self, input: f32, k: f32) -> f32 {
match self.params.mode {
SvfMode::LP => self.vout[0], // lowpass
SvfMode::HP => self.vout[2], // highpass
SvfMode::BP1 => self.vout[1], // bandpass
// the notch isn't limited to the -1 to 1 range like the other modes, not sure how to solve nicely for it currently
SvfMode::Notch => input + k * self.vout[1], // notch
//3 => input + 2. * k * self.vout[1], // allpass
SvfMode::BP2 => k * self.vout[1], // bandpass (normalized peak gain)
// _ => input + 2. * self.vout[1] + k * self.vout[0], // peak / resonator thingy
}
}
}