1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Copyright (c) 2021-2022 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of synfx-dsp. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
//
// The implementation of this Biquad Filter has been adapted from
// SamiPerttu, Copyright (c) 2020, under the MIT License.
// See also: https://github.com/SamiPerttu/fundsp/blob/master/src/filter.rs
//
// You will find a float type agnostic version in SamiPerttu's code.
// I converted this to pure f32 for no good reason, other than making
// the code more readable (for me).

//! A biquad filter implementation.
///
/// It is unfortunately still missing some coefficient calculations for some types of filters.
use std::f32::consts::*;

#[derive(Copy, Clone, Debug, Default)]
pub struct BiquadCoefs {
    pub a1: f32,
    pub a2: f32,
    pub b0: f32,
    pub b1: f32,
    pub b2: f32,
}

// TODO:
// https://github.com/VCVRack/Befaco/blob/v1/src/ChowDSP.hpp#L339
// more coeffs from there ^^^^^^^^^^^^^ ?
impl BiquadCoefs {
    #[inline]
    pub fn new(b0: f32, b1: f32, b2: f32, a1: f32, a2: f32) -> Self {
        Self { b0, b1, b2, a1, a2 }
    }

    /// Returns settings for a Butterworth lowpass filter.
    /// Cutoff is the -3 dB point of the filter in Hz.
    #[inline]
    pub fn butter_lowpass(sample_rate: f32, cutoff: f32) -> BiquadCoefs {
        let f = (cutoff * PI / sample_rate).tan();
        let a0r = 1.0 / (1.0 + SQRT_2 * f + f * f);
        let a1 = (2.0 * f * f - 2.0) * a0r;
        let a2 = (1.0 - SQRT_2 * f + f * f) * a0r;
        let b0 = f * f * a0r;
        let b1 = 2.0 * b0;
        let b2 = b0;
        BiquadCoefs { a1, a2, b0, b1, b2 }
    }

    /// Returns the Q for cascading a butterworth filter:
    pub fn calc_cascaded_butter_q(order: usize, casc_idx: usize) -> f32 {
        let order = order as f32;
        let casc_idx = casc_idx as f32;

        let b = -2.0 * ((2.0 * casc_idx + order - 1.0) * PI / (2.0 * order)).cos();

        1.0 / b
    }

    /// Returns settings for a lowpass filter with a specific q
    #[inline]
    pub fn lowpass(sample_rate: f32, q: f32, cutoff: f32) -> BiquadCoefs {
        let f = (cutoff * PI / sample_rate).tan();
        let a0r = 1.0 / (1.0 + f / q + f * f);

        /*
        float norm = 1.f / (1.f + K / Q + K * K);
        this->b[0] = K * K * norm;
        this->b[1] = 2.f * this->b[0];
        this->b[2] = this->b[0];
        this->a[1] = 2.f * (K * K - 1.f) * norm;
        this->a[2] = (1.f - K / Q + K * K) * norm;
        */

        let b0 = f * f * a0r;
        let b1 = 2.0 * b0;
        let b2 = b0;
        let a1 = 2.0 * (f * f - 1.0) * a0r;
        let a2 = (1.0 - f / q + f * f) * a0r;

        BiquadCoefs { a1, a2, b0, b1, b2 }
    }

    /// Returns settings for a constant-gain bandpass resonator.
    /// The center frequency is given in Hz.
    /// Bandwidth is the difference in Hz between -3 dB points of the filter response.
    /// The overall gain of the filter is independent of bandwidth.
    pub fn resonator(sample_rate: f32, center: f32, bandwidth: f32) -> BiquadCoefs {
        let r = (-PI * bandwidth / sample_rate).exp();
        let a1 = -2.0 * r * (TAU * center / sample_rate).cos();
        let a2 = r * r;
        let b0 = (1.0 - r * r).sqrt() * 0.5;
        let b1 = 0.0;
        let b2 = -b0;
        BiquadCoefs { a1, a2, b0, b1, b2 }
    }

    //    /// Frequency response at frequency `omega` expressed as fraction of sampling rate.
    //    pub fn response(&self, omega: f64) -> Complex64 {
    //        let z1 = Complex64::from_polar(1.0, -TAU * omega);
    //        let z2 = Complex64::from_polar(1.0, -2.0 * TAU * omega);
    //        (re(self.b0) + re(self.b1) * z1 + re(self.b2) * z2)
    //            / (re(1.0) + re(self.a1) * z1 + re(self.a2) * z2)
    //    }
}

/// 2nd order IIR filter implemented in normalized Direct Form I.
#[derive(Debug, Copy, Clone, Default)]
pub struct Biquad {
    coefs: BiquadCoefs,
    x1: f32,
    x2: f32,
    y1: f32,
    y2: f32,
}

impl Biquad {
    pub fn new() -> Self {
        Default::default()
    }

    #[inline]
    pub fn new_with(b0: f32, b1: f32, b2: f32, a1: f32, a2: f32) -> Self {
        let mut s = Self::new();
        s.set_coefs(BiquadCoefs::new(b0, b1, b2, a1, a2));
        s
    }

    #[inline]
    pub fn coefs(&self) -> &BiquadCoefs {
        &self.coefs
    }

    #[inline]
    pub fn set_coefs(&mut self, coefs: BiquadCoefs) {
        self.coefs = coefs;
    }

    pub fn reset(&mut self) {
        self.x1 = 0.0;
        self.x2 = 0.0;
        self.y1 = 0.0;
        self.y2 = 0.0;
    }

    #[inline]
    pub fn tick(&mut self, input: f32) -> f32 {
        let x0 = input;
        let y0 = self.coefs.b0 * x0 + self.coefs.b1 * self.x1 + self.coefs.b2 * self.x2
            - self.coefs.a1 * self.y1
            - self.coefs.a2 * self.y2;
        self.x2 = self.x1;
        self.x1 = x0;
        self.y2 = self.y1;
        self.y1 = y0;
        y0

        // Transposed Direct Form II would be:
        //   y0 = b0 * x0 + s1
        //   s1 = s2 + b1 * x0 - a1 * y0
        //   s2 = b2 * x0 - a2 * y0
    }
}

#[derive(Copy, Clone)]
pub struct ButterLowpass {
    biquad: Biquad,
    sample_rate: f32,
    cutoff: f32,
}

#[allow(dead_code)]
impl ButterLowpass {
    pub fn new(sample_rate: f32, cutoff: f32) -> Self {
        let mut this = ButterLowpass { biquad: Biquad::new(), sample_rate, cutoff: 0.0 };
        this.set_cutoff(cutoff);
        this
    }

    pub fn set_cutoff(&mut self, cutoff: f32) {
        self.biquad.set_coefs(BiquadCoefs::butter_lowpass(self.sample_rate, cutoff));
        self.cutoff = cutoff;
    }

    fn set_sample_rate(&mut self, srate: f32) {
        self.sample_rate = srate;
        self.reset();
        self.biquad.reset();
        self.set_cutoff(self.cutoff);
    }

    fn reset(&mut self) {
        self.biquad.reset();
        self.set_cutoff(self.cutoff);
    }

    #[inline]
    fn tick(&mut self, input: f32) -> f32 {
        self.biquad.tick(input)
    }
}