1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use crate::{consumer::Consumer, producer::Producer};
use alloc::{sync::Arc, vec::Vec};
use cache_padded::CachePadded;
use core::{
    cell::UnsafeCell,
    cmp::min,
    mem::MaybeUninit,
    ptr::{self, copy},
    sync::atomic::{AtomicUsize, Ordering},
};

pub(crate) struct SharedVec<T: Sized> {
    cell: UnsafeCell<Vec<T>>,
    len: usize,
}

unsafe impl<T: Sized> Sync for SharedVec<T> {}

impl<T: Sized> SharedVec<T> {
    pub fn new(data: Vec<T>) -> Self {
        Self {
            len: data.len(),
            cell: UnsafeCell::new(data),
        }
    }

    pub fn len(&self) -> usize {
        self.len
    }
    pub unsafe fn get_ref(&self) -> &Vec<T> {
        &*self.cell.get()
    }
    #[allow(clippy::mut_from_ref)]
    pub unsafe fn get_mut(&self) -> &mut Vec<T> {
        &mut *self.cell.get()
    }
}

/// Ring buffer itself.
pub struct RingBuffer<T: Sized> {
    pub(crate) data: SharedVec<MaybeUninit<T>>,
    pub(crate) head: CachePadded<AtomicUsize>,
    pub(crate) tail: CachePadded<AtomicUsize>,
}

impl<T: Sized> RingBuffer<T> {
    /// Creates a new instance of a ring buffer.
    pub fn new(capacity: usize) -> Self {
        let mut data = Vec::new();
        data.resize_with(capacity + 1, MaybeUninit::uninit);
        Self {
            data: SharedVec::new(data),
            head: CachePadded::new(AtomicUsize::new(0)),
            tail: CachePadded::new(AtomicUsize::new(0)),
        }
    }

    /// Splits ring buffer into producer and consumer.
    pub fn split(self) -> (Producer<T>, Consumer<T>) {
        let arc = Arc::new(self);
        (Producer { rb: arc.clone() }, Consumer { rb: arc })
    }

    /// Returns capacity of the ring buffer.
    pub fn capacity(&self) -> usize {
        self.data.len() - 1
    }

    /// Checks if the ring buffer is empty.
    pub fn is_empty(&self) -> bool {
        let head = self.head.load(Ordering::Acquire);
        let tail = self.tail.load(Ordering::Acquire);
        head == tail
    }

    /// Checks if the ring buffer is full.
    pub fn is_full(&self) -> bool {
        let head = self.head.load(Ordering::Acquire);
        let tail = self.tail.load(Ordering::Acquire);
        (tail + 1) % self.data.len() == head
    }

    /// The length of the data in the buffer.
    pub fn len(&self) -> usize {
        let head = self.head.load(Ordering::Acquire);
        let tail = self.tail.load(Ordering::Acquire);
        (tail + self.data.len() - head) % self.data.len()
    }

    /// The remaining space in the buffer.
    pub fn remaining(&self) -> usize {
        self.capacity() - self.len()
    }
}

impl<T: Sized> Drop for RingBuffer<T> {
    fn drop(&mut self) {
        let data = unsafe { self.data.get_mut() };

        let head = self.head.load(Ordering::Acquire);
        let tail = self.tail.load(Ordering::Acquire);
        let len = data.len();

        let slices = if head <= tail {
            (head..tail, 0..0)
        } else {
            (head..len, 0..tail)
        };

        let drop = |elem_ref: &mut MaybeUninit<T>| unsafe {
            elem_ref.as_ptr().read();
        };
        for elem in data[slices.0].iter_mut() {
            drop(elem);
        }
        for elem in data[slices.1].iter_mut() {
            drop(elem);
        }
    }
}

struct SlicePtr<T: Sized> {
    pub ptr: *mut T,
    pub len: usize,
}

impl<T> SlicePtr<T> {
    fn null() -> Self {
        Self {
            ptr: ptr::null_mut(),
            len: 0,
        }
    }
    fn new(slice: &mut [T]) -> Self {
        Self {
            ptr: slice.as_mut_ptr(),
            len: slice.len(),
        }
    }
    unsafe fn shift(&mut self, count: usize) {
        self.ptr = self.ptr.add(count);
        self.len -= count;
    }
}

/// Moves at most `count` items from the `src` consumer to the `dst` producer.
/// Consumer and producer may be of different buffers as well as of the same one.
///
/// `count` is the number of items being moved, if `None` - as much as possible items will be moved.
///
/// Returns number of items been moved.
pub fn move_items<T>(src: &mut Consumer<T>, dst: &mut Producer<T>, count: Option<usize>) -> usize {
    unsafe {
        src.pop_access(|src_left, src_right| -> usize {
            dst.push_access(|dst_left, dst_right| -> usize {
                let n = count.unwrap_or_else(|| {
                    min(
                        src_left.len() + src_right.len(),
                        dst_left.len() + dst_right.len(),
                    )
                });
                let mut m = 0;
                let mut src = (SlicePtr::new(src_left), SlicePtr::new(src_right));
                let mut dst = (SlicePtr::new(dst_left), SlicePtr::new(dst_right));

                loop {
                    let k = min(n - m, min(src.0.len, dst.0.len));
                    if k == 0 {
                        break;
                    }
                    copy(src.0.ptr, dst.0.ptr, k);
                    if src.0.len == k {
                        src.0 = src.1;
                        src.1 = SlicePtr::null();
                    } else {
                        src.0.shift(k);
                    }
                    if dst.0.len == k {
                        dst.0 = dst.1;
                        dst.1 = SlicePtr::null();
                    } else {
                        dst.0.shift(k);
                    }
                    m += k
                }

                m
            })
        })
    }
}