1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
use alloc::sync::Arc;
use core::{
cmp::{self, min},
mem::{self, MaybeUninit},
ops::Range,
ptr::copy_nonoverlapping,
slice,
sync::atomic,
};
#[cfg(feature = "std")]
use std::io::{self, Read, Write};
use crate::{producer::Producer, ring_buffer::*};
/// Consumer part of ring buffer.
pub struct Consumer<T> {
pub(crate) rb: Arc<RingBuffer<T>>,
}
impl<T: Sized> Consumer<T> {
/// Returns capacity of the ring buffer.
///
/// The capacity of the buffer is constant.
pub fn capacity(&self) -> usize {
self.rb.capacity()
}
/// Checks if the ring buffer is empty.
///
/// *The result may become irrelevant at any time because of concurring activity of the producer.*
pub fn is_empty(&self) -> bool {
self.rb.is_empty()
}
/// Checks if the ring buffer is full.
///
/// The result is relevant until you remove items from the consumer.
pub fn is_full(&self) -> bool {
self.rb.is_full()
}
/// The length of the data stored in the buffer
///
/// Actual length may be equal to or greater than the returned value.
pub fn len(&self) -> usize {
self.rb.len()
}
/// The remaining space in the buffer.
///
/// Actual remaining space may be equal to or less than the returning value.
pub fn remaining(&self) -> usize {
self.rb.remaining()
}
fn get_ranges(&self) -> (Range<usize>, Range<usize>) {
let head = self.rb.head.load(atomic::Ordering::Acquire);
let tail = self.rb.tail.load(atomic::Ordering::Acquire);
let len = self.rb.data.len();
match head.cmp(&tail) {
cmp::Ordering::Less => (head..tail, 0..0),
cmp::Ordering::Greater => (head..len, 0..tail),
cmp::Ordering::Equal => (0..0, 0..0),
}
}
/// Returns a pair of slices which contain, in order, the contents of the `RingBuffer`.
///
/// *The slices may not include elements pushed to the buffer by concurring producer after the method call.*
pub fn as_slices(&self) -> (&[T], &[T]) {
let ranges = self.get_ranges();
unsafe {
let ptr = self.rb.data.get_ref().as_ptr();
let left = slice::from_raw_parts(ptr.add(ranges.0.start), ranges.0.len());
let right = slice::from_raw_parts(ptr.add(ranges.1.start), ranges.1.len());
(
&*(left as *const [MaybeUninit<T>] as *const [T]),
&*(right as *const [MaybeUninit<T>] as *const [T]),
)
}
}
/// Returns a pair of slices which contain, in order, the contents of the `RingBuffer`.
///
/// *The slices may not include elements pushed to the buffer by concurring producer after the method call.*
pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
let ranges = self.get_ranges();
unsafe {
let ptr = self.rb.data.get_mut().as_mut_ptr();
let left = slice::from_raw_parts_mut(ptr.add(ranges.0.start), ranges.0.len());
let right = slice::from_raw_parts_mut(ptr.add(ranges.1.start), ranges.1.len());
(
&mut *(left as *mut [MaybeUninit<T>] as *mut [T]),
&mut *(right as *mut [MaybeUninit<T>] as *mut [T]),
)
}
}
/// Gives immutable access to the elements contained by the ring buffer without removing them.
///
/// The method takes a function `f` as argument.
/// `f` takes two slices of ring buffer contents (the second one or both of them may be empty).
/// First slice contains older elements.
///
/// *The slices may not include elements pushed to the buffer by concurring producer after the method call.*
///
/// *Marked deprecated in favor of `as_slices`.*
#[deprecated(since = "0.2.7", note = "please use `as_slices` instead")]
pub fn access<F: FnOnce(&[T], &[T])>(&self, f: F) {
let (left, right) = self.as_slices();
f(left, right);
}
/// Gives mutable access to the elements contained by the ring buffer without removing them.
///
/// The method takes a function `f` as argument.
/// `f` takes two slices of ring buffer contents (the second one or both of them may be empty).
/// First slice contains older elements.
///
/// *The iteration may not include elements pushed to the buffer by concurring producer after the method call.*
///
/// *Marked deprecated in favor of `as_mut_slices`.*
#[deprecated(since = "0.2.7", note = "please use `as_mut_slices` instead")]
pub fn access_mut<F: FnOnce(&mut [T], &mut [T])>(&mut self, f: F) {
let (left, right) = self.as_mut_slices();
f(left, right);
}
/// Allows to read from ring buffer memory directly.
///
/// *This function is unsafe because it gives access to possibly uninitialized memory*
///
/// The method takes a function `f` as argument.
/// `f` takes two slices of ring buffer content (the second one or both of them may be empty).
/// First slice contains older elements.
///
/// `f` should return number of elements been read.
/// *There is no checks for returned number - it remains on the developer's conscience.*
///
/// The method **always** calls `f` even if ring buffer is empty.
///
/// The method returns number returned from `f`.
///
/// # Safety
///
/// The method gives access to ring buffer underlying memory which may be uninitialized.
///
/// *It's up to you to copy or drop appropriate elements if you use this function.*
///
pub unsafe fn pop_access<F>(&mut self, f: F) -> usize
where
F: FnOnce(&mut [MaybeUninit<T>], &mut [MaybeUninit<T>]) -> usize,
{
let head = self.rb.head.load(atomic::Ordering::Acquire);
let tail = self.rb.tail.load(atomic::Ordering::Acquire);
let len = self.rb.data.len();
let ranges = match head.cmp(&tail) {
cmp::Ordering::Less => (head..tail, 0..0),
cmp::Ordering::Greater => (head..len, 0..tail),
cmp::Ordering::Equal => (0..0, 0..0),
};
let ptr = self.rb.data.get_mut().as_mut_ptr();
let slices = (
slice::from_raw_parts_mut(ptr.wrapping_add(ranges.0.start), ranges.0.len()),
slice::from_raw_parts_mut(ptr.wrapping_add(ranges.1.start), ranges.1.len()),
);
let n = f(slices.0, slices.1);
if n > 0 {
let new_head = (head + n) % len;
self.rb.head.store(new_head, atomic::Ordering::Release);
}
n
}
/// Copies data from the ring buffer to the slice in byte-to-byte manner.
///
/// The `elems` slice should contain **un-initialized** data before the method call.
/// After the call the copied part of data in `elems` should be interpreted as **initialized**.
/// The remaining part is still **un-initialized**.
///
/// Returns the number of items been copied.
///
/// # Safety
///
/// The method copies raw data from the ring buffer.
///
/// *You should manage copied elements after call, otherwise you may get a memory leak.*
///
pub unsafe fn pop_copy(&mut self, elems: &mut [MaybeUninit<T>]) -> usize {
self.pop_access(|left, right| {
if elems.len() < left.len() {
copy_nonoverlapping(left.as_ptr(), elems.as_mut_ptr(), elems.len());
elems.len()
} else {
copy_nonoverlapping(left.as_ptr(), elems.as_mut_ptr(), left.len());
if elems.len() < left.len() + right.len() {
copy_nonoverlapping(
right.as_ptr(),
elems.as_mut_ptr().add(left.len()),
elems.len() - left.len(),
);
elems.len()
} else {
copy_nonoverlapping(
right.as_ptr(),
elems.as_mut_ptr().add(left.len()),
right.len(),
);
left.len() + right.len()
}
}
})
}
/// Removes latest element from the ring buffer and returns it.
/// Returns `None` if the ring buffer is empty.
pub fn pop(&mut self) -> Option<T> {
let mut elem_mu = MaybeUninit::uninit();
let n = unsafe {
self.pop_access(|slice, _| {
if !slice.is_empty() {
mem::swap(slice.get_unchecked_mut(0), &mut elem_mu);
1
} else {
0
}
})
};
match n {
0 => None,
1 => Some(unsafe { elem_mu.assume_init() }),
_ => unreachable!(),
}
}
/// Repeatedly calls the closure `f` passing elements removed from the ring buffer to it.
///
/// The closure is called until it returns `false` or the ring buffer is empty.
///
/// The method returns number of elements been removed from the buffer.
pub fn pop_each<F: FnMut(T) -> bool>(&mut self, mut f: F, count: Option<usize>) -> usize {
unsafe {
self.pop_access(|left, right| {
let lb = match count {
Some(n) => min(n, left.len()),
None => left.len(),
};
for (i, dst) in left[0..lb].iter_mut().enumerate() {
if !f(dst.as_ptr().read()) {
return i + 1;
}
}
if lb < left.len() {
return lb;
}
let rb = match count {
Some(n) => min(n - lb, right.len()),
None => right.len(),
};
for (i, dst) in right[0..rb].iter_mut().enumerate() {
if !f(dst.as_ptr().read()) {
return lb + i + 1;
}
}
lb + rb
})
}
}
/// Iterate immutably over the elements contained by the ring buffer without removing them.
///
/// *The iteration may not include elements pushed to the buffer by concurring producer after the method call.*
///
/// *Marked deprecated in favor of `iter`.*
#[deprecated(since = "0.2.7", note = "please use `iter` instead")]
pub fn for_each<F: FnMut(&T)>(&self, mut f: F) {
let (left, right) = self.as_slices();
for c in left.iter() {
f(c);
}
for c in right.iter() {
f(c);
}
}
/// Returns a front-to-back iterator.
pub fn iter(&self) -> impl Iterator<Item = &T> + '_ {
let (left, right) = self.as_slices();
left.iter().chain(right.iter())
}
/// Iterate mutably over the elements contained by the ring buffer without removing them.
///
/// *The iteration may not include elements pushed to the buffer by concurring producer after the method call.*
///
/// *Marked deprecated in favor of `iter_mut`.*
#[deprecated(since = "0.2.7", note = "please use `iter_mut` instead")]
pub fn for_each_mut<F: FnMut(&mut T)>(&mut self, mut f: F) {
let (left, right) = self.as_mut_slices();
for c in left.iter_mut() {
f(c);
}
for c in right.iter_mut() {
f(c);
}
}
/// Returns a front-to-back iterator that returns mutable references.
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> + '_ {
let (left, right) = self.as_mut_slices();
left.iter_mut().chain(right.iter_mut())
}
/// Removes at most `n` and at least `min(n, Consumer::len())` items from the buffer and safely drops them.
///
/// If there is no concurring producer activity then exactly `min(n, Consumer::len())` items are removed.
///
/// Returns the number of deleted items.
///
///
/// ```rust
/// # extern crate ringbuf;
/// # use ringbuf::RingBuffer;
/// # fn main() {
/// let rb = RingBuffer::<i32>::new(8);
/// let (mut prod, mut cons) = rb.split();
///
/// assert_eq!(prod.push_iter(&mut (0..8)), 8);
///
/// assert_eq!(cons.discard(4), 4);
/// assert_eq!(cons.discard(8), 4);
/// assert_eq!(cons.discard(8), 0);
/// # }
/// ```
pub fn discard(&mut self, n: usize) -> usize {
unsafe {
self.pop_access(|left, right| {
let (mut cnt, mut rem) = (0, n);
let left_elems = if rem <= left.len() {
cnt += rem;
left.get_unchecked_mut(0..rem)
} else {
cnt += left.len();
left
};
rem = n - cnt;
let right_elems = if rem <= right.len() {
cnt += rem;
right.get_unchecked_mut(0..rem)
} else {
cnt += right.len();
right
};
for e in left_elems.iter_mut().chain(right_elems.iter_mut()) {
e.as_mut_ptr().drop_in_place();
}
cnt
})
}
}
/// Removes at most `count` elements from the consumer and appends them to the producer.
/// If `count` is `None` then as much as possible elements will be moved.
/// The producer and consumer parts may be of different buffers as well as of the same one.
///
/// On success returns count of elements been moved.
pub fn move_to(&mut self, other: &mut Producer<T>, count: Option<usize>) -> usize {
move_items(self, other, count)
}
}
impl<T: Sized> Iterator for Consumer<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.pop()
}
}
impl<T: Sized + Copy> Consumer<T> {
/// Removes first elements from the ring buffer and writes them into a slice.
/// Elements should be [`Copy`](https://doc.rust-lang.org/std/marker/trait.Copy.html).
///
/// On success returns count of elements been removed from the ring buffer.
pub fn pop_slice(&mut self, elems: &mut [T]) -> usize {
unsafe { self.pop_copy(&mut *(elems as *mut [T] as *mut [MaybeUninit<T>])) }
}
}
#[cfg(feature = "std")]
impl Consumer<u8> {
/// Removes at most first `count` bytes from the ring buffer and writes them into
/// a [`Write`](https://doc.rust-lang.org/std/io/trait.Write.html) instance.
/// If `count` is `None` then as much as possible bytes will be written.
///
/// Returns `Ok(n)` if `write` succeeded. `n` is number of bytes been written.
/// `n == 0` means that either `write` returned zero or ring buffer is empty.
///
/// If `write` is failed or returned an invalid number then error is returned.
pub fn write_into(
&mut self,
writer: &mut dyn Write,
count: Option<usize>,
) -> io::Result<usize> {
let mut err = None;
let n = unsafe {
self.pop_access(|left, _| -> usize {
let left = match count {
Some(c) => {
if c < left.len() {
&mut left[0..c]
} else {
left
}
}
None => left,
};
match writer
.write(&*(left as *const [MaybeUninit<u8>] as *const [u8]))
.and_then(|n| {
if n <= left.len() {
Ok(n)
} else {
Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Write operation returned an invalid number",
))
}
}) {
Ok(n) => n,
Err(e) => {
err = Some(e);
0
}
}
})
};
match err {
Some(e) => Err(e),
None => Ok(n),
}
}
}
#[cfg(feature = "std")]
impl Read for Consumer<u8> {
fn read(&mut self, buffer: &mut [u8]) -> io::Result<usize> {
let n = self.pop_slice(buffer);
if n == 0 && !buffer.is_empty() {
Err(io::ErrorKind::WouldBlock.into())
} else {
Ok(n)
}
}
}