1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.

use crate::dsp::{Node, ProcBuf, SAtom};
use std::cell::RefCell;
use triple_buffer::{Input, Output, TripleBuffer};

thread_local! {
    pub static NODE_PROG_ID_COUNTER: RefCell<usize> = RefCell::new(1);
}

#[derive(Debug, Clone)]
pub struct ModOp {
    amount: f32,
    modbuf: ProcBuf,
    outbuf: ProcBuf,
    inbuf: ProcBuf,
}

impl Drop for ModOp {
    fn drop(&mut self) {
        self.modbuf.free();
    }
}

impl ModOp {
    pub fn new() -> Self {
        Self {
            amount: 0.0,
            modbuf: ProcBuf::new(),
            outbuf: ProcBuf::null(),
            inbuf: ProcBuf::null(),
        }
    }

    pub fn set_amt(&mut self, amt: f32) {
        self.amount = amt;
    }

    pub fn lock(&mut self, inbuf: ProcBuf, outbuf: ProcBuf) -> ProcBuf {
        self.inbuf = inbuf;
        self.outbuf = outbuf;
        self.modbuf
    }

    pub fn unlock(&mut self) {
        self.outbuf = ProcBuf::null();
        self.inbuf = ProcBuf::null();
    }

    #[inline]
    pub fn process(&mut self, nframes: usize) {
        let modbuf = &mut self.modbuf;
        let inbuf = &mut self.inbuf;
        let outbuf = &mut self.outbuf;

        if inbuf.is_null() {
            return;
        }

        for frame in 0..nframes {
            modbuf.write(frame, inbuf.read(frame) + (self.amount * outbuf.read(frame)));
        }
    }
}

/// Step in a `NodeProg` that stores the to be
/// executed node and output operations.
#[derive(Debug, Clone)]
pub struct NodeOp {
    /// Stores the index of the node
    pub idx: u8,
    /// Stores the reference to the node.
    pub node: Node,
    /// Output index and length of the node:
    pub out_idxlen: (usize, usize),
    /// Input index and length of the node:
    pub in_idxlen: (usize, usize),
    /// Atom data index and length of the node:
    pub at_idxlen: (usize, usize),
    /// ModOp index and length of the node:
    pub mod_idxlen: (usize, usize),
    /// Input indices,
    /// (<out vec index>, <own node input index>,
    ///  (<mod index into NodeProg::modops>, <mod amt>))
    pub inputs: Vec<(usize, usize, Option<usize>)>,
    /// A bit mask which indicates which of the input ports are actually
    /// used/connected to some output.
    pub in_connected: u64,
    /// A bit mask which indicates which of the output ports are actually
    /// used/connected to some input.
    pub out_connected: u64,
}

impl NodeOp {
    pub fn in_idx_belongs_to_nodeop(&self, idx: usize) -> bool {
        idx >= self.in_idxlen.0 && idx < self.in_idxlen.1
    }

    pub fn set_in_idx_connected_flag(&mut self, global_idx: usize) {
        if !self.in_idx_belongs_to_nodeop(global_idx) {
            return;
        }

        let local_idx = global_idx - self.in_idxlen.0;
        self.in_connected |= 0x1 << local_idx;
    }

    pub fn out_idx_belongs_to_nodeop(&self, idx: usize) -> bool {
        idx >= self.out_idxlen.0 && idx < self.out_idxlen.1
    }

    pub fn set_out_idx_connected_flag(&mut self, global_idx: usize) {
        if !self.out_idx_belongs_to_nodeop(global_idx) {
            return;
        }

        let local_idx = global_idx - self.out_idxlen.0;
        self.out_connected |= 0x1 << local_idx;
    }
}

impl std::fmt::Display for NodeOp {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "Op(i={} out=({}-{}|{:x}) in=({}-{}|{:x}) at=({}-{}) mod=({}-{})",
            self.idx,
            self.out_idxlen.0,
            self.out_idxlen.1,
            self.out_connected,
            self.in_idxlen.0,
            self.in_idxlen.1,
            self.in_connected,
            self.at_idxlen.0,
            self.at_idxlen.1,
            self.mod_idxlen.0,
            self.mod_idxlen.1
        )?;

        for i in self.inputs.iter() {
            write!(f, " cpy=(o{} => i{})", i.0, i.1)?;
        }

        for i in self.inputs.iter() {
            if let Some(idx) = i.2 {
                write!(f, " mod={}", idx)?;
            }
        }

        write!(f, ")")
    }
}

/// A node graph execution program. It comes with buffers
/// for the inputs, outputs and node parameters (knob values).
#[derive(Debug)]
pub struct NodeProg {
    /// The input vector stores the smoothed values of the params.
    /// It is not used directly, but will be merged into the `cur_inp`
    /// field together with the assigned outputs.
    pub inp: Vec<ProcBuf>,

    /// The temporary input vector that is initialized from `inp`
    /// and is then merged with the associated outputs.
    pub cur_inp: Vec<ProcBuf>,

    /// The output vector, holding all the node outputs.
    pub out: Vec<ProcBuf>,

    /// The param vector, holding all parameter inputs of the
    /// nodes, such as knob settings.
    pub params: Vec<f32>,

    /// The atom vector, holding all non automatable parameter inputs
    /// of the nodes, such as samples or integer settings.
    pub atoms: Vec<SAtom>,

    /// The node operations that are executed in the order they appear in this
    /// vector.
    pub prog: Vec<NodeOp>,

    /// The modulators for the input parameters.
    pub modops: Vec<ModOp>,

    /// A marker, that checks if we can still swap buffers with
    /// with other NodeProg instances. This is usally set if the ProcBuf pointers
    /// have been copied into `cur_inp`. You can call `unlock_buffers` to
    /// clear `locked_buffers`:
    pub locked_buffers: bool,

    /// Holds the input end of a triple buffer that is used
    /// to publish the most recent output values to the frontend.
    pub out_feedback: Input<Vec<f32>>,

    /// Temporary hold for the producer for the `out_feedback`:
    pub out_fb_cons: Option<Output<Vec<f32>>>,

    /// A unique ID assigned to the node prog. Mostly for debugging purposes.
    /// You should only read this field.
    pub unique_id: usize,
}

impl Drop for NodeProg {
    fn drop(&mut self) {
        for buf in self.inp.iter_mut() {
            buf.free();
        }

        for buf in self.out.iter_mut() {
            buf.free();
        }
    }
}

fn new_node_prog_id() -> usize {
    NODE_PROG_ID_COUNTER.with(|cnt| {
        let unique_id = *cnt.borrow();
        *cnt.borrow_mut() += 1;
        unique_id
    })
}

impl NodeProg {
    pub fn empty() -> Self {
        let out_fb = vec![];
        let tb = TripleBuffer::new(out_fb);
        let (input_fb, output_fb) = tb.split();
        Self {
            out: vec![],
            inp: vec![],
            cur_inp: vec![],
            params: vec![],
            atoms: vec![],
            prog: vec![],
            modops: vec![],
            out_feedback: input_fb,
            out_fb_cons: Some(output_fb),
            locked_buffers: false,
            unique_id: new_node_prog_id(),
        }
    }

    pub fn new(out_len: usize, inp_len: usize, at_len: usize, mod_len: usize) -> Self {
        let mut out = vec![];
        out.resize_with(out_len, ProcBuf::new);

        let out_fb = vec![0.0; out_len];
        let tb = TripleBuffer::new(out_fb);
        let (input_fb, output_fb) = tb.split();

        let mut inp = vec![];
        inp.resize_with(inp_len, ProcBuf::new);
        let mut cur_inp = vec![];
        cur_inp.resize_with(inp_len, ProcBuf::null);

        let mut params = vec![];
        params.resize(inp_len, 0.0);
        let mut atoms = vec![];
        atoms.resize(at_len, SAtom::setting(0));
        let mut modops = vec![];
        modops.resize_with(mod_len, ModOp::new);

        Self {
            out,
            inp,
            cur_inp,
            params,
            atoms,
            modops,
            prog: vec![],
            out_feedback: input_fb,
            out_fb_cons: Some(output_fb),
            locked_buffers: false,
            unique_id: new_node_prog_id(),
        }
    }

    pub fn take_feedback_consumer(&mut self) -> Option<Output<Vec<f32>>> {
        self.out_fb_cons.take()
    }

    pub fn params_mut(&mut self) -> &mut [f32] {
        &mut self.params
    }

    pub fn atoms_mut(&mut self) -> &mut [SAtom] {
        &mut self.atoms
    }

    pub fn modops_mut(&mut self) -> &mut [ModOp] {
        &mut self.modops
    }

    pub fn append_op(&mut self, mut node_op: NodeOp) {
        for n_op in self.prog.iter_mut() {
            if n_op.idx == node_op.idx {
                return;
            }
        }

        node_op.out_connected = 0x0;
        node_op.in_connected = 0x0;
        self.prog.push(node_op);
    }

    pub fn append_edge(
        &mut self,
        node_op: NodeOp,
        inp_index: usize,
        out_index: usize,
        mod_index: Option<usize>,
    ) {
        for n_op in self.prog.iter_mut() {
            if n_op.out_idx_belongs_to_nodeop(out_index) {
                n_op.set_out_idx_connected_flag(out_index);
            }
        }

        for n_op in self.prog.iter_mut() {
            if n_op.idx == node_op.idx {
                n_op.set_in_idx_connected_flag(inp_index);
                n_op.inputs.push((out_index, inp_index, mod_index));
                return;
            }
        }
    }

    /// This is called right after the [crate::nodes::NodeExecutor]
    /// received this NodeProg from the [crate::nodes::NodeConfigurator].
    /// It initializes internal buffers with parameter data.
    pub fn initialize_input_buffers(&mut self) {
        for param_idx in 0..self.params.len() {
            let param_val = self.params[param_idx];
            self.inp[param_idx].fill(param_val);
        }
    }

    pub fn swap_previous_outputs(&mut self, prev_prog: &mut NodeProg) {
        if self.locked_buffers {
            self.unlock_buffers();
        }

        if prev_prog.locked_buffers {
            prev_prog.unlock_buffers();
        }

        // XXX: Swapping is now safe, because the `cur_inp` field
        //      no longer references to the buffers in `inp` or `out`.
        for (old_inp_pb, new_inp_pb) in prev_prog.inp.iter_mut().zip(self.inp.iter_mut()) {
            std::mem::swap(old_inp_pb, new_inp_pb);
        }
    }

    pub fn unlock_buffers(&mut self) {
        for buf in self.cur_inp.iter_mut() {
            *buf = ProcBuf::null();
        }
        for modop in self.modops.iter_mut() {
            modop.unlock();
        }
        self.locked_buffers = false;
    }

    pub fn assign_outputs(&mut self) {
        for op in self.prog.iter() {
            // First step is copying the ProcBufs to the `cur_inp` current
            // input buffer vector. It holds the data for smoothed paramter
            // inputs or just constant values since the last smoothing.
            //
            // Next we overwrite the input ProcBufs which have an
            // assigned output buffer.
            //
            // ProcBuf has a raw pointer inside, and this copying
            // is therefor very fast.
            //
            // XXX: This requires, that the graph is not cyclic,
            // because otherwise we would write output buffers which
            // are already accessed in the current iteration.
            // This might lead to unexpected effects inside the process()
            // call of the nodes.
            let input_bufs = &mut self.cur_inp;
            let out_bufs = &mut self.out;

            let inp = op.in_idxlen;

            // First step (refresh inputs):
            input_bufs[inp.0..inp.1].copy_from_slice(&self.inp[inp.0..inp.1]);

            // Second step (assign outputs):
            for io in op.inputs.iter() {
                input_bufs[io.1] = out_bufs[io.0];

                if let Some(idx) = io.2 {
                    input_bufs[io.1] = self.modops[idx].lock(self.inp[io.1], out_bufs[io.0]);
                }
            }
        }

        self.locked_buffers = true;
    }
}