1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
use super::{
FeedbackFilter, GraphEvent, GraphMessage, HxMidiEvent, NodeOp, NodeProg, MAX_DSP_NODE_INPUTS,
UNUSED_MONITOR_IDX,
};
use crate::dsp::{node_factory, Node, NodeId, NodeInfo, ParamId, SAtom};
use crate::monitor::{new_monitor_processor, MinMaxMonitorSamples, Monitor, MON_SIG_CNT};
use crate::nodes::drop_thread::DropThread;
use crate::SampleLibrary;
use crate::{NodeGlobalData, NodeGlobalRef};
use ringbuf::{Consumer, Producer, RingBuffer};
use std::collections::HashMap;
use std::sync::Arc;
use synfx_dsp::AtomicFloat;
use triple_buffer::Output;
const NODE_COMMUNICATION_BUFFER_SIZE: usize = 512;
/// A NodeInstance describes the input/output/atom ports of a Node
/// and holds other important house keeping information for the [NodeConfigurator].
#[derive(Debug, Clone)]
pub struct NodeInstance {
id: NodeId,
node: Node,
in_use: bool,
prog_idx: usize,
out_start: usize,
out_end: usize,
in_start: usize,
in_end: usize,
at_start: usize,
at_end: usize,
mod_start: usize,
mod_end: usize,
/// A mapping array, to map from input index of the node
/// to the modulator index. Because not every input has an
/// associated modulator.
/// This is used later to send [GraphMessage::ModamtUpdate].
/// The input index into this array is the index returned from
/// routines like [NodeId::inp_param].
in2mod_map: [Option<usize>; MAX_DSP_NODE_INPUTS],
}
impl NodeInstance {
pub fn new(id: NodeId, node: Node) -> Self {
Self {
id,
node,
in_use: false,
prog_idx: 0,
out_start: 0,
out_end: 0,
in_start: 0,
in_end: 0,
at_start: 0,
at_end: 0,
mod_start: 0,
mod_end: 0,
in2mod_map: [None; MAX_DSP_NODE_INPUTS],
}
}
pub fn mark_used(&mut self) {
self.in_use = true;
}
pub fn is_used(&self) -> bool {
self.in_use
}
pub fn as_op(&self) -> NodeOp {
NodeOp {
idx: self.prog_idx as u8,
node: self.node.clone(),
out_idxlen: (self.out_start, self.out_end),
in_idxlen: (self.in_start, self.in_end),
at_idxlen: (self.at_start, self.at_end),
mod_idxlen: (self.mod_start, self.mod_end),
out_connected: 0x0,
in_connected: 0x0,
inputs: vec![],
}
}
pub fn mod_in_local2global(&self, idx: u8) -> Option<usize> {
if (idx as usize) > self.in2mod_map.len() {
return None;
}
self.in2mod_map[idx as usize]
}
pub fn in_local2global(&self, idx: u8) -> Option<usize> {
let idx = self.in_start + idx as usize;
if idx < self.in_end {
Some(idx)
} else {
None
}
}
pub fn out_local2global(&self, idx: u8) -> Option<usize> {
let idx = self.out_start + idx as usize;
if idx < self.out_end {
Some(idx)
} else {
None
}
}
pub fn set_index(&mut self, idx: usize) -> &mut Self {
self.prog_idx = idx;
self
}
pub fn set_output(&mut self, s: usize, e: usize) -> &mut Self {
self.out_start = s;
self.out_end = e;
self
}
pub fn set_input(&mut self, s: usize, e: usize) -> &mut Self {
self.in_start = s;
self.in_end = e;
self
}
pub fn set_mod(&mut self, s: usize, e: usize) -> &mut Self {
self.mod_start = s;
self.mod_end = e;
self
}
/// Sets the modulator index mapping: `idx` is the
/// index of the parameter like in [NodeId::inp_param_by_idx],
/// and `i` is the absolute index of the modulator that belongs
/// to this parameter.
pub fn set_mod_idx(&mut self, idx: usize, i: usize) -> &mut Self {
self.in2mod_map[idx] = Some(i);
self
}
pub fn set_atom(&mut self, s: usize, e: usize) -> &mut Self {
self.at_start = s;
self.at_end = e;
self
}
}
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
struct NodeInputParam {
param_id: ParamId,
input_idx: usize,
value: f32,
modamt: Option<(usize, f32)>,
}
#[derive(Debug, Clone)]
struct NodeInputAtom {
param_id: ParamId,
at_idx: usize,
value: SAtom,
}
/// This struct holds the frontend node configuration.
///
/// It stores which nodes are allocated and where.
/// Allocation of new nodes is done here, and parameter management
/// and synchronization is also done by this. It generally acts
/// as facade for the executed node graph in the backend.
///
/// This API is the most low level API provided by HexoDSP.
/// It shows how to create nodes and connect them.
/// The execution of the nodes in the audio thread is
/// controlled by a `NodeProg`, which defines the order
/// the nodes are executed in.
///
/// This only showcases the non-realtime generation of audio
/// samples. For a real time application of this library please
/// refer to the examples that come with this library.
///
/// ```rust
/// use hexodsp::*;
///
/// let (mut node_conf, mut node_exec) = new_node_engine();
///
/// node_conf.create_node(NodeId::Sin(0));
/// node_conf.create_node(NodeId::Amp(0));
///
/// let mut prog = node_conf.rebuild_node_ports();
///
/// node_conf.add_prog_node(&mut prog, &NodeId::Sin(0));
/// node_conf.add_prog_node(&mut prog, &NodeId::Amp(0));
///
/// node_conf.set_prog_node_exec_connection(
/// &mut prog,
/// (NodeId::Amp(0), NodeId::Amp(0).inp("inp").unwrap()),
/// (NodeId::Sin(0), NodeId::Sin(0).out("sig").unwrap()));
///
/// node_conf.upload_prog(prog, true);
///
/// let (out_l, out_r) = node_exec.test_run(0.1, false, &[]);
/// ```
pub struct NodeConfigurator {
/// Holds all the nodes, their parameters and type.
pub(crate) nodes: Vec<(NodeInfo, Option<NodeInstance>, Node)>,
/// An index of all nodes ever instanciated.
/// Be aware, that currently there is no cleanup implemented.
/// That means, any instanciated NodeId will persist throughout
/// the whole runtime. A garbage collector might be implemented
/// when saving presets.
pub(crate) node2idx: HashMap<NodeId, usize>,
/// The shared parts of the [NodeConfigurator]
/// and the [crate::nodes::NodeExecutor].
pub(crate) shared: SharedNodeConf,
/// Reference to the [crate::NodeGlobalData] that is used to initialize the
/// [crate::dsp::DspNode] instances creates by this [NodeConfigurator].
pub(crate) node_global: NodeGlobalRef,
feedback_filter: FeedbackFilter,
/// Loads and Caches audio samples that are set as parameters
/// for nodes.
sample_lib: SampleLibrary,
/// Error messages:
errors: Vec<String>,
/// Contains (automateable) parameters
params: std::collections::HashMap<ParamId, NodeInputParam>,
/// Stores the most recently set parameter values
param_values: std::collections::HashMap<ParamId, f32>,
/// Stores the modulation amount of a parameter
param_modamt: std::collections::HashMap<ParamId, Option<f32>>,
/// Contains non automateable atom data for the nodes
atoms: std::collections::HashMap<ParamId, NodeInputAtom>,
/// Stores the most recently set atoms
atom_values: std::collections::HashMap<ParamId, SAtom>,
/// Holds a copy of the most recently updated output port feedback
/// values. Update this by calling [NodeConfigurator::update_output_feedback].
output_fb_values: Vec<f32>,
/// Holds the channel to the backend that sends output port feedback.
/// This is queried by [NodeConfigurator::update_output_feedback].
output_fb_cons: Option<Output<Vec<f32>>>,
}
pub(crate) struct SharedNodeConf {
/// Holds the LED values of the nodes
pub(crate) node_ctx_values: Vec<Arc<AtomicFloat>>,
/// For updating the NodeExecutor with graph updates.
pub(crate) graph_update_prod: Producer<GraphMessage>,
/// For receiving events from the DSP graph.
pub(crate) graph_event_cons: Consumer<GraphEvent>,
/// For receiving monitor data from the backend thread.
pub(crate) monitor: Monitor,
/// Handles deallocation of dead nodes from the backend.
#[allow(dead_code)]
pub(crate) drop_thread: DropThread,
/// Sample rate of the backend
pub(crate) sample_rate: Arc<AtomicFloat>,
}
use super::node_exec::SharedNodeExec;
impl SharedNodeConf {
pub(crate) fn new() -> (Self, SharedNodeExec) {
let rb_graph = RingBuffer::new(NODE_COMMUNICATION_BUFFER_SIZE);
let rb_drop = RingBuffer::new(NODE_COMMUNICATION_BUFFER_SIZE);
let rb_ev = RingBuffer::new(NODE_COMMUNICATION_BUFFER_SIZE);
let (rb_graph_prod, rb_graph_con) = rb_graph.split();
let (rb_drop_prod, rb_drop_con) = rb_drop.split();
let (rb_ev_prod, rb_ev_con) = rb_ev.split();
let drop_thread = DropThread::new(rb_drop_con);
let (monitor_backend, monitor) = new_monitor_processor();
let mut node_ctx_values = Vec::new();
node_ctx_values
.resize_with(NODE_COMMUNICATION_BUFFER_SIZE, || Arc::new(AtomicFloat::new(0.0)));
let mut exec_node_ctx_vals = Vec::new();
for ctx_val in node_ctx_values.iter() {
exec_node_ctx_vals.push(ctx_val.clone());
}
let sample_rate = Arc::new(AtomicFloat::new(44100.0));
(
Self {
node_ctx_values,
graph_update_prod: rb_graph_prod,
graph_event_cons: rb_ev_con,
monitor,
drop_thread,
sample_rate: sample_rate.clone(),
},
SharedNodeExec {
node_ctx_values: exec_node_ctx_vals,
graph_update_con: rb_graph_con,
graph_drop_prod: rb_drop_prod,
graph_event_prod: rb_ev_prod,
monitor_backend,
sample_rate,
},
)
}
}
impl NodeConfigurator {
pub(crate) fn new() -> (Self, SharedNodeExec) {
let nodes = Vec::new();
let (shared, shared_exec) = SharedNodeConf::new();
let node_global = NodeGlobalData::new_ref();
(
NodeConfigurator {
nodes,
shared,
node_global,
errors: vec![],
sample_lib: SampleLibrary::new(),
feedback_filter: FeedbackFilter::new(),
output_fb_values: vec![],
output_fb_cons: None,
params: std::collections::HashMap::new(),
param_values: std::collections::HashMap::new(),
param_modamt: std::collections::HashMap::new(),
atoms: std::collections::HashMap::new(),
atom_values: std::collections::HashMap::new(),
node2idx: HashMap::new(),
},
shared_exec,
)
}
// FIXME: We can't drop nodes at runtime!
// We need to reinitialize the whole engine for this.
// There are too many things relying on the node index (UI).
//
// pub fn drop_node(&mut self, idx: usize) {
// if idx >= self.nodes.len() {
// return;
// }
//
// match self.nodes[idx] {
// NodeInfo::Nop => { return; },
// _ => {},
// }
//
// self.nodes[idx] = NodeInfo::Nop;
// let _ =
// self.graph_update_prod.push(
// GraphMessage::NewNode {
// index: idx as u8,
// node: Node::Nop,
// });
// }
pub fn for_each<F: FnMut(&NodeInfo, NodeId, usize)>(&self, mut f: F) {
for (i, n) in self.nodes.iter().enumerate() {
let nid = n.0.to_id();
if NodeId::Nop == nid {
break;
}
f(&n.0, nid, i);
}
}
pub fn pop_error(&mut self) -> Option<String> {
self.errors.pop()
}
pub fn unique_index_for(&self, ni: &NodeId) -> Option<usize> {
self.node2idx.get(&ni).copied()
}
pub(crate) fn node_by_id(
&self,
ni: &NodeId,
) -> Option<&(NodeInfo, Option<NodeInstance>, Node)> {
let idx = self.unique_index_for(ni)?;
self.nodes.get(idx)
}
pub(crate) fn node_by_id_mut(
&mut self,
ni: &NodeId,
) -> Option<&mut (NodeInfo, Option<NodeInstance>, Node)> {
let idx = self.unique_index_for(ni)?;
self.nodes.get_mut(idx)
}
/// Returns the current modulation amount of the given parameter.
/// Returns `None` if no modulation amount if set and thus no
/// implicit attenuverter is set.
pub fn get_param_modamt(&self, param: &ParamId) -> Option<f32> {
self.param_modamt.get(¶m).copied().flatten()
}
/// Set the modulation amount of a parameter.
/// Returns true if a new [NodeProg] needs to be created, which can be
/// necessary if there was no modulation amount assigned to this parameter
/// yet.
pub fn set_param_modamt(&mut self, param: ParamId, v: Option<f32>) -> bool {
if param.is_atom() {
return false;
}
let mut mod_idx = None;
if let Some(nparam) = self.params.get_mut(¶m) {
if let Some(modamt) = &mut nparam.modamt {
mod_idx = Some(modamt.0);
modamt.1 = v.unwrap_or(0.0);
}
}
// Check if the modulation amount was already set, if not, the caller
// needs to reconstruct the graph and upload an updated NodeProg.
if let Some(_old_modamt) = self.param_modamt.get(¶m).copied().flatten() {
if v.is_none() {
self.param_modamt.insert(param, v);
true
} else {
let modamt = v.unwrap();
self.param_modamt.insert(param, v);
if let Some(mod_idx) = mod_idx {
let _ = self
.shared
.graph_update_prod
.push(GraphMessage::ModamtUpdate { mod_idx, modamt });
}
false
}
} else {
self.param_modamt.insert(param, v);
true
}
}
/// Retrieve [SAtom] values for input parameters and atoms.
pub fn get_param(&self, param: &ParamId) -> Option<SAtom> {
if param.is_atom() {
self.atom_values.get(param).cloned()
} else {
self.param_values.get(param).map(|v| (*v).into())
}
}
/// Assign [SAtom] values to input parameters and atoms.
///
/// Only updates the DSP backend if [NodeConfigurator::rebuild_node_ports] was called
/// before calling this. If no graph or the corresponding parameter is not active yet,
/// then the value will be remembered until [NodeConfigurator::rebuild_node_ports] is called.
pub fn set_param(&mut self, param: ParamId, at: SAtom) {
if param.is_atom() {
let at = if let SAtom::AudioSample((path, None)) = at.clone() {
if !path.is_empty() {
match self.sample_lib.load(&path) {
Ok(sample) => sample.clone(),
Err(e) => {
self.errors.push(format!(
"Sample Loading Error\n\
Couldn't load sample '{}':\n{:?}",
path, e
));
at
}
}
} else {
at
}
} else {
at
};
self.atom_values.insert(param, at.clone());
if let Some(nparam) = self.atoms.get_mut(¶m) {
nparam.value = at.clone();
let at_idx = nparam.at_idx;
let _ = self
.shared
.graph_update_prod
.push(GraphMessage::AtomUpdate { at_idx, value: at });
}
} else {
self.param_values.insert(param, at.f());
if let Some(nparam) = self.params.get_mut(¶m) {
let value = at.f();
nparam.value = value;
let input_idx = nparam.input_idx;
let _ = self
.shared
.graph_update_prod
.push(GraphMessage::ParamUpdate { input_idx, value });
}
}
}
/// Dumps all set parameters (inputs and atoms).
/// Most useful for serialization and saving patches.
#[allow(clippy::type_complexity)]
pub fn dump_param_values(&self) -> (Vec<(ParamId, f32, Option<f32>)>, Vec<(ParamId, SAtom)>) {
let params: Vec<(ParamId, f32, Option<f32>)> = self
.param_values
.iter()
.map(|(param_id, value)| {
(
*param_id,
param_id.denorm(*value),
self.param_modamt.get(param_id).copied().flatten(),
)
})
.collect();
let atoms: Vec<(ParamId, SAtom)> =
self.atom_values.iter().map(|(param_id, value)| (*param_id, value.clone())).collect();
(params, atoms)
}
/// Loads parameter values from a dump. You will still need to upload
/// a new [NodeProg] which contains these values.
pub fn load_dumped_param_values(
&mut self,
params: &[(ParamId, f32, Option<f32>)],
atoms: &[(ParamId, SAtom)],
normalize_params: bool,
) {
for (param_id, val, modamt) in params.iter() {
let val = if normalize_params { param_id.norm(*val) } else { *val };
self.set_param(*param_id, val.into());
self.set_param_modamt(*param_id, *modamt);
}
for (param_id, val) in atoms.iter() {
self.set_param(*param_id, val.clone());
}
}
/// Iterates over every parameter and calls the given function with
/// it's current value.
pub fn for_each_param<F: FnMut(usize, ParamId, &SAtom, Option<f32>)>(&self, mut f: F) {
for (_, node_input) in self.atoms.iter() {
if let Some(unique_idx) = self.unique_index_for(&node_input.param_id.node_id()) {
f(unique_idx, node_input.param_id, &node_input.value, None);
}
}
for (_, node_input) in self.params.iter() {
if let Some(unique_idx) = self.unique_index_for(&node_input.param_id.node_id()) {
let modamt = self.param_modamt.get(&node_input.param_id).copied().flatten();
f(unique_idx, node_input.param_id, &SAtom::param(node_input.value), modamt);
}
}
}
/// Returns the current phase value of the given node.
///
/// It usually returns something like the position of a sequencer
/// or the phase of an oscillator.
pub fn phase_value_for(&self, ni: &NodeId) -> f32 {
if let Some(idx) = self.unique_index_for(ni) {
self.shared.node_ctx_values[(idx * 2) + 1].get()
} else {
0.0
}
}
/// Returns the current status LED value of the given node.
///
/// A status LED might be anything a specific node deems the most
/// important value. Often it might be just the current value
/// of the primary signal output.
pub fn led_value_for(&self, ni: &NodeId) -> f32 {
if let Some(idx) = self.unique_index_for(ni) {
self.shared.node_ctx_values[idx * 2].get()
} else {
0.0
}
}
/// Triggers recalculation of the filtered values from the
/// current LED values and output feedback.
///
/// This function internally calls [NodeConfigurator::update_output_feedback]
/// for you, so you don't need to call it yourself.
///
/// See also [NodeConfigurator::filtered_led_for]
/// and [NodeConfigurator::filtered_out_fb_for].
pub fn update_filters(&mut self) {
self.update_output_feedback();
self.feedback_filter.trigger_recalc();
}
/// Returns a filtered LED value that is smoothed a bit
/// and provides a min and max value.
///
/// Make sure to call [NodeConfigurator::update_filters]
/// before calling this function, or the values won't be up to date.
///
///```
/// use hexodsp::*;
///
/// let (mut node_conf, mut node_exec) = new_node_engine();
///
/// node_conf.create_node(NodeId::Sin(0));
/// node_conf.create_node(NodeId::Amp(0));
///
/// let mut prog = node_conf.rebuild_node_ports();
///
/// node_conf.add_prog_node(&mut prog, &NodeId::Sin(0));
/// node_conf.add_prog_node(&mut prog, &NodeId::Amp(0));
///
/// node_conf.set_prog_node_exec_connection(
/// &mut prog,
/// (NodeId::Amp(0), NodeId::Amp(0).inp("inp").unwrap()),
/// (NodeId::Sin(0), NodeId::Sin(0).out("sig").unwrap()));
///
/// node_conf.upload_prog(prog, true);
///
/// node_exec.test_run(0.1, false, &[]);
/// assert!((node_conf.led_value_for(&NodeId::Sin(0)) - (-0.062522)).abs() < 0.001);
/// assert!((node_conf.led_value_for(&NodeId::Amp(0)) - (-0.062522)).abs() < 0.001);
///
/// for _ in 0..10 {
/// node_exec.test_run(0.1, false, &[]);
/// node_conf.update_filters();
/// node_conf.filtered_led_for(&NodeId::Sin(0));
/// node_conf.filtered_led_for(&NodeId::Amp(0));
/// }
///
/// assert_eq!((node_conf.filtered_led_for(&NodeId::Sin(0)).0 * 1000.0).floor() as i64, 62);
/// assert_eq!((node_conf.filtered_led_for(&NodeId::Amp(0)).0 * 1000.0).floor() as i64, 62);
///```
pub fn filtered_led_for(&mut self, ni: &NodeId) -> (f32, f32) {
let led_value = self.led_value_for(ni);
self.feedback_filter.get_led(ni, led_value)
}
/// Returns a filtered output port value that is smoothed
/// a bit and provides a min and max value.
///
/// Make sure to call [NodeConfigurator::update_filters]
/// before calling this function, or the values won't be up to date.
/// That function also calls [NodeConfigurator::update_output_feedback]
/// for you conveniently.
///
/// For an example on how to use see [NodeConfigurator::filtered_led_for]
/// which has the same semantics as this function.
pub fn filtered_out_fb_for(&mut self, node_id: &NodeId, out: u8) -> (f32, f32) {
let out_value = self.out_fb_for(node_id, out).unwrap_or(0.0);
self.feedback_filter.get_out(node_id, out, out_value)
}
/// Monitor the given inputs and outputs of a specific node.
///
/// The monitor data can be retrieved using
/// [NodeConfigurator::get_minmax_monitor_samples].
pub fn monitor(&mut self, node_id: &NodeId, inputs: &[Option<u8>], outputs: &[Option<u8>]) {
let mut bufs = [UNUSED_MONITOR_IDX; MON_SIG_CNT];
if let Some((_node_info, Some(node_instance), _)) = self.node_by_id(node_id) {
let mut i = 0;
for inp_idx in inputs.iter().take(MON_SIG_CNT / 2) {
if let Some(inp_idx) = inp_idx {
if let Some(global_idx) = node_instance.in_local2global(*inp_idx) {
bufs[i] = global_idx;
}
}
i += 1;
}
for out_idx in outputs.iter().take(MON_SIG_CNT / 2) {
if let Some(out_idx) = out_idx {
if let Some(global_idx) = node_instance.out_local2global(*out_idx) {
bufs[i] = global_idx;
}
}
i += 1;
}
let _ = self.shared.graph_update_prod.push(GraphMessage::SetMonitor { bufs });
}
}
pub fn get_node_global(&self) -> NodeGlobalRef {
self.node_global.clone()
}
pub fn delete_nodes(&mut self) {
self.node2idx.clear();
self.nodes.clear();
self.params.clear();
self.param_values.clear();
self.param_modamt.clear();
self.atoms.clear();
self.atom_values.clear();
let _ = self.shared.graph_update_prod.push(GraphMessage::Clear { prog: NodeProg::empty() });
}
pub fn create_node(&mut self, ni: NodeId) -> Option<(&NodeInfo, u8)> {
if let Some((node, info)) = node_factory(ni, &self.node_global) {
node.set_sample_rate(self.shared.sample_rate.get());
let index = self.nodes.len();
self.node2idx.insert(ni, index);
self.nodes.push((info, None, node.clone()));
Some((&self.nodes[index].0, index as u8))
} else {
None
}
}
/// Returns the first instance of the given [NodeId] (starting with the
/// instance of the [NodeId]) that has not been used.
///
/// Primarily used by the (G)UI when creating new nodes to be added to the
/// graph.
///
/// Should be called after the [NodeProg] has been created
/// (and after [NodeConfigurator::rebuild_node_ports] was called).
///
/// If new nodes were created/deleted/reordered in between this function
/// might not work properly and assign already used instances.
pub fn unused_instance_node_id(&self, mut id: NodeId) -> NodeId {
while let Some((_, Some(ni), _)) = self.node_by_id(&id) {
if !ni.is_used() {
return ni.id;
}
id = id.to_instance(id.instance() + 1);
}
id
}
/// Rebuilds Input/Output/Atom indices for the nodes, which is necessary
/// if nodes were created/deleted or reordered. It also assigns
/// input parameter and atom values for new nodes.
///
/// Returns a new NodeProg with space for all allocated nodes
/// inputs, outputs and atoms.
///
/// Execute this after a [NodeConfigurator::create_node].
pub fn rebuild_node_ports(&mut self) -> NodeProg {
// Regenerating the params and atoms in the next step:
self.params.clear();
self.atoms.clear();
let mut out_len = 0;
let mut in_len = 0;
let mut at_len = 0;
let mut mod_len = 0;
for (i, (node_info, node_instance, node)) in self.nodes.iter_mut().enumerate() {
let id = node_info.to_id();
// - calculate size of output vector.
let out_idx = out_len;
out_len += node_info.out_count();
// - calculate size of input vector.
let in_idx = in_len;
in_len += node_info.in_count();
// - calculate size of atom vector.
let at_idx = at_len;
at_len += node_info.at_count();
// - hold the mod start index of this node.
let mod_idx = mod_len;
if id == NodeId::Nop {
break;
}
let mut ni = NodeInstance::new(id, node.clone());
ni.set_index(i)
.set_output(out_idx, out_len)
.set_input(in_idx, in_len)
.set_atom(at_idx, at_len);
// - save offset and length of each node's
// allocation in the output vector.
*node_instance = Some(ni);
//d// println!("INSERT[{}]: {:?} outidx: {},{} inidx: {},{} atidx: {},{}",
//d// i, id, out_idx, out_len, in_idx, in_len, at_idx, at_len);
// Create new parameters and initialize them if they did not
// already exist previously
for param_idx in in_idx..in_len {
let input_idx = param_idx - in_idx;
if let Some(param_id) = id.inp_param_by_idx(input_idx) {
let value = if let Some(value) = self.param_values.get(¶m_id) {
*value
} else {
param_id.norm_def()
};
// If we have a modulation, store the absolute
// index of it in the [NodeProg::modops] vector later:
let ma = self.param_modamt.get(¶m_id).copied().flatten();
let modamt = if ma.is_some() {
let mod_idx = mod_len;
node_instance.as_mut().unwrap().set_mod_idx(input_idx, mod_idx);
mod_len += 1;
Some((mod_idx, ma.unwrap()))
} else {
None
};
self.param_values.insert(param_id, value);
self.params.insert(
param_id,
NodeInputParam { param_id, value, input_idx: param_idx, modamt },
);
}
}
// After iterating through the parameters we can
// store the range of the indices of this node.
node_instance.as_mut().unwrap().set_mod(mod_idx, mod_len);
// Create new atom data and initialize it if it did not
// already exist from a previous matrix instance.
for atom_idx in at_idx..at_len {
// XXX: See also the documentation of atom_param_by_idx about the
// little param_id for an Atom weirdness here.
if let Some(param_id) = id.atom_param_by_idx(atom_idx - at_idx) {
let value = if let Some(atom) = self.atom_values.get(¶m_id) {
atom.clone()
} else {
param_id.as_atom_def()
};
self.atom_values.insert(param_id, value.clone());
self.atoms
.insert(param_id, NodeInputAtom { param_id, value, at_idx: atom_idx });
}
}
}
NodeProg::new(out_len, in_len, at_len, mod_len)
}
/// Creates a new [NodeOp] and add it to the [NodeProg].
///
/// It will fail silently if the nodes have not been created yet or
/// [NodeConfigurator::rebuild_node_ports] was not called before. So make sure this is the
/// case or don't expect the node and input to be executed.
pub fn add_prog_node(&mut self, prog: &mut NodeProg, node_id: &NodeId) {
if let Some((_node_info, Some(node_instance), _)) = self.node_by_id_mut(node_id) {
node_instance.mark_used();
let op = node_instance.as_op();
prog.append_op(op);
}
}
/// Adds an adjacent output connection to the given node input.
/// Will either create a new [NodeOp] in the [NodeProg] or append to an
/// existing one. This means the order you set the to be executed node
/// connections, is the order the [NodeProg] is going to be executed by the
/// DSP thread later.
///
/// It will fail silently if the nodes have not been created yet or
/// [NodeConfigurator::rebuild_node_ports] was not called before. So make sure this is the
/// case or don't expect the node and input to be executed.
pub fn set_prog_node_exec_connection(
&mut self,
prog: &mut NodeProg,
node_input: (NodeId, u8),
adjacent_output: (NodeId, u8),
) {
let output_index =
if let Some((_, Some(node_instance), _)) = self.node_by_id(&adjacent_output.0) {
node_instance.out_local2global(adjacent_output.1)
} else {
return;
};
if let Some((_node_info, Some(node_instance), _)) = self.node_by_id_mut(&node_input.0) {
node_instance.mark_used();
let op = node_instance.as_op();
let input_index = node_instance.in_local2global(node_input.1);
let mod_index = node_instance.mod_in_local2global(node_input.1);
if let (Some(input_index), Some(output_index)) = (input_index, output_index) {
prog.append_edge(op, input_index, output_index, mod_index);
}
}
}
/// Uploads a new NodeProg instance.
///
/// Create a new NodeProg instance with [NodeConfigurator::rebuild_node_ports]
/// for each call to this function. Otherwise things like the
/// [NodeConfigurator::out_fb_for] might not work properly!
///
/// The `copy_old_out` parameter should be set if there are only
/// new nodes appended to the end of the node instances.
/// It helps to prevent clicks when there is a feedback path somewhere.
///
/// It must not be set when a completely new set of node instances
/// was created, for instance when a completely new patch was loaded.
///
/// Here is an example on how to use the [NodeConfigurator]
/// directly to setup and upload a [NodeProg]:
///
///```
/// use hexodsp::*;
///
/// let (mut node_conf, mut node_exec) = new_node_engine();
///
/// node_conf.create_node(NodeId::Sin(0));
/// node_conf.create_node(NodeId::Amp(0));
///
/// let mut prog = node_conf.rebuild_node_ports();
///
/// node_conf.add_prog_node(&mut prog, &NodeId::Sin(0));
/// node_conf.add_prog_node(&mut prog, &NodeId::Amp(0));
///
/// node_conf.set_prog_node_exec_connection(
/// &mut prog,
/// (NodeId::Amp(0), NodeId::Amp(0).inp("inp").unwrap()),
/// (NodeId::Sin(0), NodeId::Sin(0).out("sig").unwrap()));
///
/// node_conf.upload_prog(prog, true);
///```
pub fn upload_prog(&mut self, mut prog: NodeProg, copy_old_out: bool) {
// Copy the parameter values and atom data into the program:
// They are extracted by process_graph_updates() later to
// reset the inp[] input value vector.
for (_param_id, param) in self.params.iter() {
prog.params_mut()[param.input_idx] = param.value;
if let Some((mod_idx, amt)) = param.modamt {
prog.modops_mut()[mod_idx].set_amt(amt);
}
}
// The atoms are referred to directly on process() call.
for (_param_id, param) in self.atoms.iter() {
prog.atoms_mut()[param.at_idx] = param.value.clone();
}
self.output_fb_cons = prog.take_feedback_consumer();
let _ = self.shared.graph_update_prod.push(GraphMessage::NewProg { prog, copy_old_out });
}
/// Retrieves the feedback value for a specific output port of the
/// given [NodeId]. You need to call [NodeConfigurator::update_output_feedback]
/// before this, or otherwise your output values might be outdated
/// or not available at all.
///
/// See also [NodeConfigurator::filtered_out_fb_for] for a
/// filtered variant suitable for UI usage.
pub fn out_fb_for(&self, node_id: &NodeId, out: u8) -> Option<f32> {
if let Some((_, Some(node_instance), _)) = self.node_by_id(node_id) {
self.output_fb_values.get(node_instance.out_local2global(out)?).copied()
} else {
None
}
}
/// Checks if the backend has new output feedback values.
/// Call this function for each frame of the UI to get the most
/// up to date output feedback values that are available.
///
/// Retrieve the output value by calling [NodeConfigurator::out_fb_for].
pub fn update_output_feedback(&mut self) {
if let Some(out_fb_output) = &mut self.output_fb_cons {
out_fb_output.update();
let out_vec = out_fb_output.output_buffer();
self.output_fb_values.clear();
self.output_fb_values.resize(out_vec.len(), 0.0);
self.output_fb_values.copy_from_slice(&out_vec[..]);
}
}
pub fn get_minmax_monitor_samples(&mut self, idx: usize) -> &MinMaxMonitorSamples {
self.shared.monitor.get_minmax_monitor_samples(idx)
}
/// Injects a [HxMidiEvent] directly into audio thread, so that it can trickle
/// back to the GUI thread the standard way. This is mostly used for automated testing.
/// And maybe some day for some kind of remote control script from WLambda?
pub fn inject_midi_event(&mut self, midi_ev: HxMidiEvent) {
let _ = self.shared.graph_update_prod.push(GraphMessage::InjectMidi { midi_ev });
}
/// Returns the next [GraphEvent] from the DSP/audio/backend thread.
pub fn next_event(&mut self) -> Option<GraphEvent> {
self.shared.graph_event_cons.pop()
}
}