1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
use crate::dsp::{
DspNode, GraphAtomData, GraphFun, LedPhaseVals, NodeContext, NodeGlobalRef, NodeId, ProcBuf,
SAtom,
};
use crate::nodes::{NodeAudioContext, NodeExecContext};
use synfx_dsp::{TriSawLFO, Trigger};
#[derive(Debug, Clone)]
pub struct TsLFO {
lfo: Box<TriSawLFO<f64>>,
trig: Trigger,
}
impl TsLFO {
pub fn new(_nid: &NodeId, _node_global: &NodeGlobalRef) -> Self {
Self { lfo: Box::new(TriSawLFO::new()), trig: Trigger::new() }
}
pub const time: &'static str = "The frequency or period time of the LFO, goes all the \
way from **0.1ms** up to **30s**. Please note, that the text entry is always \
in milliseconds.";
pub const trig: &'static str = "Triggers a phase reset of the LFO.";
pub const rev: &'static str = "The reverse point of the LFO waveform. At **0.5** the LFO \
will follow a triangle waveform. At **0.0** or **1.0** the LFO waveform will \
be (almost) a (reversed) saw tooth. Node: A perfect sawtooth can not be \
achieved with this oscillator, as there will always be a minimal \
rise/fall time.";
pub const sig: &'static str = "The LFO output.";
pub const DESC: &'static str = r#"TriSaw LFO
This simple LFO has a configurable waveform.
You can blend between triangular to sawtooth waveforms using the ~~rev~~ parameter.
"#;
pub const HELP: &'static str = r#"TriSaw LFO
This simple LFO has a configurable waveform. You can blend between
triangular to sawtooth waveforms using the ~~rev~~ parameter.
Using the ~~trig~~ input you can reset the LFO phase, which allows to use it
kind of like an envelope.
"#;
pub fn graph_fun() -> Option<GraphFun> {
let mut lfo = TriSawLFO::new();
lfo.set_sample_rate(160.0);
Some(Box::new(move |gd: &dyn GraphAtomData, init: bool, _x: f32, _xn: f32| -> f32 {
if init {
lfo.reset();
let time_idx = NodeId::TsLFO(0).inp_param("time").unwrap().inp();
let rev_idx = NodeId::TsLFO(0).inp_param("rev").unwrap().inp();
let time = gd.get_norm(time_idx as u32).sqrt();
let rev = gd.get_norm(rev_idx as u32);
lfo.set(5.0 * (1.0 - time) + time * 1.0, rev);
}
lfo.next_unipolar() as f32
}))
}
}
impl DspNode for TsLFO {
fn set_sample_rate(&mut self, srate: f32) {
self.lfo.set_sample_rate(srate as f64);
}
fn reset(&mut self) {
self.lfo.reset();
self.trig.reset();
}
#[inline]
fn process(
&mut self,
ctx: &mut dyn NodeAudioContext,
_ectx: &mut NodeExecContext,
_nctx: &NodeContext,
_atoms: &[SAtom],
inputs: &[ProcBuf],
outputs: &mut [ProcBuf],
ctx_vals: LedPhaseVals,
) {
use crate::dsp::{denorm, inp, out};
let time = inp::TsLFO::time(inputs);
let trig = inp::TsLFO::trig(inputs);
let rev = inp::TsLFO::rev(inputs);
let out = out::TsLFO::sig(outputs);
let lfo = &mut *self.lfo;
for frame in 0..ctx.nframes() {
if self.trig.check_trigger(denorm::TsLFO::trig(trig, frame)) {
lfo.reset();
}
let time_ms = denorm::TsLFO::time(time, frame).clamp(0.1, 300000.0);
lfo.set((1000.0 / time_ms) as f64, denorm::TsLFO::rev(rev, frame) as f64);
out.write(frame, lfo.next_unipolar() as f32);
}
ctx_vals[0].set(out.read(ctx.nframes() - 1));
}
}